当前位置:首页 > 厂商动态 > Rambus
[导读]下一代服务器内存展望

回顾2020年,在新基建的驱动下,数据中心正迎来发展的新契机。这一趋势加速推动了DDR向更快、更高效的新一代产品迭代,国内各大厂商纷纷布局DDR5内存并力推其广泛商业化。2020年7月14日,JEDEC发布了DDR5 SDRAM标准,标志着整个行业即将向DDR5服务器双列直插式内存模块(DIMM)过渡。DDR5内存带来了一系列重要改进,有望帮助下一代服务器实现更好的性能和更低的功耗。以下是DDR5内存的五大亮点。

数据传输速率提升至6.4 Gb/s

内存带宽的需求增长是永无止境的,而DDR5可满足对速度的不懈追求。DDR4 DIMM在1.6 GHz时钟频率下数据传输速率最高可达3.2 Gb/s,相比之下,最初版本的DDR5就将带宽提高了50%,达到4.8 Gbps。DDR5内存的速率最终将比DDR4内存高出一倍,达到6.4 Gbps。在新增判决反馈均衡器(DFE)等新功能后,DDR5可实现更高的I/O速度。

更低的电压带来更低的功耗

DDR5内存的第二大改良是工作电压(VDD)有所下降,进而带来功耗的相应降低。采用DDR5之后,DRAM、缓冲芯片寄存时钟驱动器(RCD)和数据缓冲器(DB)的供电电压从1.2V下降到1.1V。不过,设计人员在设计产品时也需要注意,工作电压(VDD)降低也意味着抗干扰裕量会变得更小。

全新的供电架构

DDR5内存的第三大改良是供电架构,这也是其中的一项重要变化。DDR5 DIMM将电源管理从主板转移到了内存模块本身,通过板载一个12V电源管理集成电路(PMIC)确保更加精细的系统电源负载。该电路会输出1.1V的工作电压(VDD),借助更好的板载电源控制优化信号的完整性和抗干扰能力。

通道架构更新

DDR5的另一大变化是采用了全新DIMM通道架构。DDR4 DIMM的总线为72位,由64个数据位和8个纠错码位组成。采用DDR5后,每个DIMM模块都有两个通道。每个通道均为40位宽:包括32个数据位,8个纠错码位。虽然数据位宽与上一代相同,总数都是64位,但DDR5的两个通道彼此独立,可提高内存访问效率。此外,DDR5带来了同一内存块刷新的新特性。这一命令允许对每一内存块组的一个内存块进行刷新,而所有其他内存块保持打开状态,以继续正常操作。因此,使用DDR5不仅意味着速率的大幅提升,其更高的效率还会放大数据速率提升所带来的优势。

在DDR5 DIMM架构中,DIMM模块左右两侧各有一个独立的40位宽通道,两个通道共用寄存时钟驱动器。DDR4中,寄存时钟驱动器每侧提供两个输出时钟。而在DDR5中,寄存时钟驱动器每侧提供四个输出时钟。最大密度的DIMM可配备4个DRAM存储器组,每5个DRAM存储器(单面,半通道)为一组,可接收自己对应的独立时钟。每个单面半通道模块对应一个独立时钟的架构能够优化信号完整性,有助于解决VDD降低所导致的抗干扰裕量减小问题。

更高容量

支持更高容量的DRAM模组是DDR5内存的第五大亮点。利用DDR5缓冲芯片DIMM,服务器或系统设计人员可以在单裸片封装模式下中使用高达64Gb的DRAM容量。而DDR4在单裸片封装(SDP)模式下仅支持最高16Gb的DRAM容量。DDR5支持诸如片上纠错码、错误透明模式、封装后修复和读写CRC校验等功能,并支持更高容量的DRAM模组,这也意味着更高的DIMM容量。因此,DDR4 DIMM在单裸片封装下的最大容量为64 GB,而DDR5 DIMM在单裸片封装下的容量则高达256 GB,是DDR4的四倍。

综合优势

DDR5在其前代产品DDR4的基础上进行了重大改进和优化,并在新的内存标准中引入了与提高速度和降低电压相关的多种设计考虑,从而引发了新一轮的信号完整性挑战。设计人员将需要确保主板和DIMM能够处理更高的信号速度,并在执行系统级仿真时检查所有DRAM位置的信号完整性。所幸的是,Rambus等供应商提供的DDR5内存接口芯片能够有效降低主机内存信号负载,在不牺牲时延性能的前提下,使DIMM上的DRAM具有更高的速度和更大的容量。

值得庆幸的是,Rambus的DDR5寄存器时钟驱动器(RCD)改善了从主机内存控制器发送到DIMM的命令和地址信号(CA)的信号完整性。其两个通道的总线都通向寄存时钟驱动器,然后呈扇形散开到DIMM的两侧,有效减少了主机内存控制器观察到的CA总线负载。Rambus的DDR5数据缓冲(DB)芯片将减少数据总线上的有效负载,从而在不牺牲时延性能的情况下,使DIMM上的DRAM具有更大的容量。

作为享誉业界的信号完整性(SI)和电源完整性(PI)领导者,在过去30余年中Rambus始终致力于为市场上最高性能的系统提供解决方案。Rambus DDR5内存接口芯片组可帮助设计人员充分利用DDR5的优势,应对更多数据、全新CA总线和更高时钟速度带来的信号完整性挑战。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭