当前位置:首页 > 物联网 > 大鱼机器人
[导读]作为计算机芯片的最基础构建块,晶体管的体积变得越来越小,相应地芯片速度变得更快且更加节能。

机器之心报道 编辑:维度、陈萍

2017 年,IBM 联合三星和 GlobalFoundries 推出了首个 5nm 制程工艺的芯片。仅仅过去不到四年,IBM 又率先公布 2nm 芯片制造技术,不仅具有更高的晶体管密度,而且采用了全新的 GAA 工艺设计。与当前 7nm 和 5nm 相比,2nm 在性能和功耗上均显著提升,将为半导体行业注入新的活力。
作为计算机芯片的最基础构建块,晶体管的体积变得越来越小,相应地芯片速度变得更快且更加节能。

当前,7nm 和 5nm 制程工艺是手机和笔记本电脑中所用芯片的主流选择。2021 年 3 月,三星公布了全球首款 3nm「SRAM 芯片」,并预计于 2022 年起量产。

在各大芯片厂商「你追我赶」的激励角逐中,IBM 率先秀出了全球首个 2nm 芯片制造技术。

5 月 6 日晚间,IBM 公布了其在半导体设计和工艺方面的一项重要突破:全球首款采用 2nm 制程工艺的芯片,有助于将半导体行业提升到一个新的水平。与当前主流的 7nm 芯片相比,IBM 2nm 芯片的 性能预计提升 45%,能耗降低 75% 。与当前领先的 5nm 芯片相比,2nm 芯片的体积也更小,速度也更快。

具体来说,2nm 芯片的潜在优势包括如下:

  • 手机续航时长翻两番,用户充一次电可以使用四天;

  • 大幅度减少数据中心的能源使用量;

  • 显著提升笔记本电脑的性能,比如更快运行应用程序、完成语言翻译和互联网访问;

  • 有助于自动驾驶汽车实现更快的目标检测和反应时间。

从更具体的细节来看,IBM 2nm 芯片每平方毫米容纳 3.33 亿个晶体管,对比之下,台积电 5nm 芯片每平方毫米容纳 1.713 亿个晶体管,三星 5nm 芯片每平方毫米容纳 1.27 亿个晶体管。


作为曾经一家主要的芯片制造商,IBM 现在将其芯片生产外包给了三星,但依然在纽约奥尔巴尼市保留了一家芯片制造研发中心。该中心主要负责芯片的测试运行,并与三星和英特尔签署联合技术开发协议,以使用 IBM 的芯片制造技术。此次公布的 2nm 芯片正是在这里设计和制造的。

更高的晶体管密度、全新架构设计

与 7 纳米处理器相比,IBM 推出的 2nm 芯片在相同功率下性能提升 45%,能效则要高出 75%。IBM 指出,他们是第一个分别在 2015 年、2017 年推出 7nm、5nm 的研究机构,后者已从 FinFET 升级为纳米片技术,从而可以更好地定制单个晶体管的电压特性。

IBM 表示,该技术可以将 500 亿个晶体管安装到一个指甲大小的芯片上,从而使处理器设计人员拥有更多选择,比如可以注入核心级创新来提高 AI 和云计算等前沿工作负载的功能,以及探寻硬件强制安全性和加密的新途径等。

如你们时常从其他报道中所了解的,不同的芯片代工厂(台积电、三星等)对晶体管密度有不同的定义。值得注意的是,这些关于密度的数字通常被列为峰值密度。


关于新制程中如何制造晶体管的关键技术 Gate-All-Around / nanosheet(环绕式栅极技术晶体管),虽然 IBM 还没有明确说明,但图片显示这款新的 2nm 处理器使用了 three-stack GAA 设计。

在目前的新制程竞争中,三星计划在 3nm 节点上推出 GAA(三星将自己的技术称为 MBCFET)。其计划在 2020 年底即开始 MBCFET 的风险试产,2021 年规模量产,同时在 2021 年推出第一代 MBCFET 的优化版本。台积电则仍希望在 3nm 上继续使用 FinFET ,等到 2nm 芯片才会推出 GAA。根据规划,台积电的 2nm 工艺会在 2023 年开始风险试产,2024 年量产。

相比之下,可以预见英特尔将在其 5nm 工艺上引入某种形式的 GAA。预计到 2023 年,这家公司会在 5nm 节点上放弃 FinFET,转向 GAA 环绕栅极晶体管。

正如目前大规模应用的 FinFET 工艺拯救了芯片产业,在 5nm 以下的时代,GAAFET 或将成为半导体产业继续向前发展的关键。不过,GAAFET 工艺的制造难度显然是极高的。

IBM 的 3-stack GAA 设计采用了 75nm 的单元高度,40nm 的单元宽度,单个纳米片的高度为 5nm,彼此之间间隔 5nm。栅极间距为 44nm,栅极长度为 12nm。IBM 表示,3-stack GAA 是首个采用底部介电隔离通道的设计,这使得 12nm 栅长成为可能,并且其内部的间隔器采用第二代干式工艺设计,有助于纳米片的开发。

在实施过程中,IBM 还广泛地使用 EUV 技术,并包括在芯片过程的前端进行 EUV 图案化,而不仅是在中间和后端,后者目前已被广泛应用于 7nm 工艺。重要的是,IBM 这个芯片上的所有关键功能都将使用 EUV 光刻技术进行蚀刻,IBM 也已经弄清楚了如何使用单次曝光 EUV 来减少用于蚀刻芯片的光学掩模的数量。

目前,还没有提供关于 2nm 测试芯片的细节,现阶段,它可能是一种简化的 SRAM 测试工具,逻辑不多。IBM 表示,测试设计使用 multi-Vt 方案来进行高性能和高效率的应用演示。

虽然 2nm 制程工艺的芯片在性能和能耗方面都较当前 7nm 和 5nm 更强,但很大程度上只是概念验证,离上市还有很长一段时间。在 2015 年 7 月,同样是 IBM 率先宣布制成了 7nm 芯片,而直到 2019 年下半年,人们才能买到带有 7nm 芯片的手机。

据悉,2nm 制程的技术大概需要几年的时间才能进入市场。

参考链接:
https://www.anandtech.com/show/16656/ibm-creates-first-2nm-chip
https://www.reuters.com/technology/ibm-unveils-2-nanometer-chip-technology-faster-computing-2021-05-06/
https://www.theverge.com/2021/5/6/22422815/ibm-2nm-chip-processors-semiconductors-power-performance-technology
https://newsroom.ibm.com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors#assets_all

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭