当前位置:首页 > 电源 > 电源系统设计
[导读]想要成为一名合格的硬件工程师,熟练掌握电源知识至关重要。

想要成为一名合格的硬件工程师,熟练掌握电源知识至关重要——
凡是在工作着的系统都必须要有电源,而电源是否可靠稳定的运行,则影响着整个系统的工作情况。那么,如何产生“干净”的电源?假设自己DIY一个开关电源的难度有多大,需具备哪些知识呢?

分解式完整学习路径

别着急,我们一步步来,先了解开关电源的定义

图1 两种常用电源如上图,电源大的分类主要有线性电源和开关电源。从简化的图形上看,(a)线性电源随着调整管的大小而输出呈现一个线性的变化,(b)中可以看出开关电源的工作原理。为什么叫开关电源?简单的说开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。图(a)和(b)中,除了把两种电源做了模型的简化,让大家非常清楚的知道两者本质区别之外,开关电源与线性电源还有如下区别:1) 功率管的工作方式不同,线性电源的功率管工作在可变电阻状态(放大区),而开关电源的功率管工作在开关状态(饱和区及截至区);2) 效率不同。线性电源的功率管是一个可变电阻那么就不可避免的需要消耗电能,而开关电源功率管工作在开关状态从而它的效率比较高,一般都在90%以上;3) 纹波不同。线性电源没有开关动作从而纹波噪声小,相反开关电源纹波噪声就较大;4) 开关电源体积较小,功率大。线性电源的功率管消耗电能因而发热量较大需要加配较大散热片,开关电源的功率管工作在开关状态产生的热损耗要小得多。

明确开关电源的概念后,再来看开关电源的构成

图2 开关电源基本组成如图2所示,开关电源的工作原理是:输入电压经过滤波之后,被主电路转换为脉冲电压,脉冲电压再经过输出端滤波后得到输出电压。同时输出端设置采样电路对输出电压进行采样反馈给控制电路,控制电路通过PWM调制控制主电路的状态从而达到电压稳定输出。基本组成中的各部分都承担着重大作用:输入滤波:将输入端的电网杂波滤除,阻碍本机产生的杂波反馈到电网;主电路:承担电压变换的主要角色,将输入滤波后的电压转化为高频的直流脉冲电压;输出滤波:滤除主电路中开关管产生的高频杂波,输出稳定的电压;采样电路:对输出电压、电流进行采样;控制电路:取得采样电流采集的数据与参考数据进行比较并产生控制信号控制主电路,以达到反馈控制的目的;辅助电源:提供控制回路的工作电压。

搞清楚概念和原理之后,补充制作最简单开关电源必备知识
很多同学最初DIY时,都逃不过炸电容,烧芯片,废MOS管….迷茫的翻阅《电力电子技术》书籍,学习什么是Buck?什么是Boost?什么是半桥?小心翼翼的焊板子,制作数控电源等。DIY的乐趣就在于此,接下来,我们提前储备一下开关电源的制作的必备知识点,好让大家在真正动手实践时少踩坑!(注意:电源的指标我们先不用定的太高,只需要设计一个输入直流、输出直流具有恒压功能的DC-DC电源即可。1)对于主电路,需要懂得Buck电路,如下图3所示。理解其工作原理,知道PWM(脉宽调制)控制其输出电压,建议大家参考一下《电力电子技术》。

图3 Buck电路原理图2)输入输出滤波电路,这一块就轻松点了。明白电解电容的耐压值要高于接入的电压才不会爆炸,要想滤波效果好就得多个电容并联,且要电解电容和瓷片电容一起用,因为瓷片电容的高频特性好,可以有效滤除高频杂波。而电解电容容量大,能保持输出电压的稳定。
3)对于控制电路,如果使用专用的开关电源芯片那么就按参考芯片手册给出的典型电路。如果采用的是微处理器,那么需要会C语言,懂得操作单片机控制其管脚输出PWM波,以及MOS管的驱动电路。4)采样这一部分需要懂得电阻分压采样,电路图如下图所示:

图4 分压采样电路图中OP97主要起到保护后级电路的作用。若没有OP97,直接将N点连接至后级电路,当输出电压突然过高,N点电压有可能超过后级电路的可承受电压,从而烧毁AD转换器或者其他后级电路。若存在OP97,那么出现N点电压过高,OP97将达到饱和区,输出电压被限制在工作电压而不会出现烧毁后级电路的情况。5)对于辅助电源,可以直接使用相关的电源芯片(如果控制电路使用的是集成开关电源芯片,那么芯片内部一般都将辅助电源集成在了内部)。6)我们建议大家控制部分使用微控制器来做,主电路自己用MOS管来搭建,辅助电源部分使用相关的开关电源芯片,例如ADI的ADP2360、LTC3309。用集成的开关电源芯片来做的话,需要自己制作的部分很少很少,只需按照芯片手册添加几个电阻、电容、电感即可。如果使用微控制器来做的话,那么主电路、采样电路、驱动芯片、辅助电源芯片都需要自己来设计和选型,学起来才深刻。END
版权归原作者所有,如有侵权,请联系删除。

电源系统设计

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭