当前位置:首页 > > ZLG致远电子
[导读]示波器和万用表都是电子工程师日常开发、调试必不可少的设备。万用表主要用于测试某一时间点的电压/电流值等,示波器则是用以绘制电压/电流随时间变化的波形。那您知道两者实际该如何正确应用吗?实测选择那么该如何判断在什么测试条件下选择示波器还是万用表来测量呢?以电容充放电过程为例,原理图...

示波器和万用表都是电子工程师日常开发、调试必不可少的设备。万用表主要用于测试某一时间点的电压/电流值等,示波器则是用以绘制电压/电流随时间变化的波形。那您知道两者实际该如何正确应用吗?

您还在把示波器当万用表来用吗? 实测选择那么该如何判断在什么测试条件下选择示波器还是万用表来测量呢?以电容充放电过程为例,原理图如图1所示。使用5V直流电源给系统供电,当S1闭合时,电容处于充电状态;当S1断开时,电容处于放电状态。理想情况下,图2为充放电波形解析,其中Ta为电容充电完成所需的时间,Tb为电容放电完成所需的时间。测试过程中使用到致远电子的万用表(DMM6000)和示波器(ZDS4054 Plus)。其中根据官方提供的指标可得,万用表(DMM6000)的精度为0.0035 % 读数 0.0007%量程,示波器(ZDS4054 Plus)的精度为满量程的2%。
您还在把示波器当万用表来用吗?

图1 电容充放电原理图

您还在把示波器当万用表来用吗?

图2 电容充放电波形

若需要获得一个更为精确的电压值,应选择万用表。
从精度层面来看,万用表的精度明显是更胜一筹的。将示波器探头或万用表的红黑表笔接在电容两端,测试电容充电完成时的电压。由图3和图4可见,万用表测得电压为2.60922V,示波器测得电压为2.68000V(因为接入的是直流电源,所以电压峰峰值=电压有效值)。万用表(DMM6000)的精度为0.0035 % 读数 0.0007%量程,即其误差范围是±0.0001613V;示波器(ZDS4054 Plus)的精度为满量程的2%,即其误差范围是±0.1600000V。
您还在把示波器当万用表来用吗?

图3 万用表实测

您还在把示波器当万用表来用吗?

图4 示波器实测
若需要观察电压随时间变化的波形或测量充电/放电完成所需时间,应选择示波器。从时间维度来看,示波器可以直观地观察到电容充放电的过程并可通过光标或者【Measure】功能测得电容充电/放电完成所需时间。如图5所示,通过自动测量得到上升时间(即电容充电完成所需时间)为9.4307s,下降时间(即电容放电完成所需时间)为9.6295s。假设使用万用表来测量,只能通过人工按间隔时间测量变化的电压值并记录,最终手动绘制波形图。从示波器测量的上升时间来看,时长非常短。尽管人工每秒记录一个数据,上升时间最多只能记录到9个数据,而通过这9个数据还原的电压变化情况是没有参考意义的。与万用表相比,示波器当前采样率为2MSa/s(每秒钟可采集2000 000个采样点),这不仅还原度更高,还更为便捷,可以节省大量的时间和人力。

您还在把示波器当万用表来用吗?

图5 上升/下降时间实测

您还在把示波器当万用表来用吗? 如何提高示波器精度若是测单点电压值,万用表的精度确实是优于示波器的。那么是否可以提高示波器的精度呢?答案是肯定的。
在测量过程中可以通过以下两个方法来提高示波器的精度(减小示波器的测量误差):1.使用合适衰减比的探头;2.减小垂直档位。
从图3、图4、图6和图7来分析,测量误差范围对比如表1所示。从表1的误差对比来看,阴影部分为示波器不同测量条件下允许的测量误差,万用表的测量结果都在示波器测量允许的误差范围内。但明显可以看出,阴影面积是②>③>④。因此在本次实例中,可通过使用×10档衰减比的探头和垂直档位减小为500mV/div的方法来提高示波器的精度。
您还在把示波器当万用表来用吗?
图6 ×1档探头测量
您还在把示波器当万用表来用吗?

图7 垂直档位减小为500mV/div

表1 测量误差范围对比
您还在把示波器当万用表来用吗?

您还在把示波器当万用表来用吗? 总结当前万用表能够实现的测量,示波器也是能够满足的。除此以外,示波器共提供53种测量项,还支持FFT、协议解码、电源分析、环路分析等功能。所谓术业有专攻,万用表的精度比示波器高且体积小、更方便携带。因此,需根据实际需求,合理选择测量设备。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭