当前位置:首页 > 通信技术 > 通信技术
[导读]有媒体报道称,佐治亚理工学院、诺基亚贝尔实验室和赫瑞瓦特大学的研究人员,找到了一种实现低成本的5G毫米波技术,叫做反向散射无线电,该方法能够让设备实现“GB每秒”的5G传输速度。

有媒体报道称,佐治亚理工学院、诺基亚贝尔实验室和赫瑞瓦特大学的研究人员,找到了一种实现低成本的5G毫米波技术,叫做反向散射无线电,该方法能够让设备实现“GB每秒”的5G传输速度。

事实上,自从5G商用以来,时不时地有各种关于毫米波的消息,比如高通、诺基亚等实现了11.4KM的毫米波超远距离传输等等。

这就让很多网友有一个疑问,那就是为何高通、诺基亚等这些国外厂商,一直在努力地研发5G毫米波技术,国内厂商似乎没动静?这究竟是怎么回事呢?

其实说起来,不只是高通、诺基亚等国外厂商在研究,国内的厂商们也一样在研究毫米波技术,比如华为、中兴以及移动、联通等运营商,一直在不断地试验研发毫米波,只是相关报道相对少一点,所以让大家以为只有国外厂商在研究,国内厂商不研究豪米波的错觉。

毫米波的劣势大家都清楚了,传输距离近,衰减快,穿墙效果差,所以基站要建得非常密,这样成本非常高。

但与此同时,毫米波的优势也非常多,频谱资源丰富,速度快,带宽大,延时低。所以只要克服了传输距离近、衰减快的劣势,就比Sub-6频段更有优势,所以这些厂商们才努研究,就想想克服这些困难。

在2019年华为开发者大会上,华为展示了使用折叠屏手机HUAWEI Mate X通过毫米波技术与基站通信在线播放4K高清视频,是全球首家使用折叠屏手机在真实网络环境下打通5G毫米波端到端通信的厂家,显示了华为不光在Sub 6G低频领域具备超强的优势,在高频领域同样处于领先地位。

华为5G基带芯片巴龙5000不光支持Sub 6G C-Band频段,还支持毫米波26GHz和28GHz频段,最大支持带宽可以达到800MHz,充分利用毫米波大带宽的优势,理论速率最大可达6.5 Gbps。配合华为的毫米波RFIC和毫米波模组,华为具备全形态的毫米波终端解决方案能力。

3GPP把5G频段分为FR1频段和FR2频段,其中FR1的频段通常被称为Sub6G频段,范围为450MHz-6GHz,FR2频段为24.25GHz-52.6GHz,通常被称为毫米波频段。毫米波频段的优势是具备大量的可用频谱带宽、波束窄、方向性好、频段许可的获取成本极低。对于室内小站场景、体育场馆或者室外街道场景,由于反射径丰富,多次反射后可以有效提升毫米波NLOS覆盖率。华为借助于先进的毫米波自适应波束赋型和波束跟踪技术,可以在毫米波终端与基站间实现文件的移动宽带通信。

低频的频谱资源终归是有限的,毫米波应用的潜力巨大,未来运营商可以利用5G低、中、高频段三层组网,1GHz以下频段做覆盖层,Sub 6G做容量层,毫米波做热点覆盖的高容量层,建成一张全国性的广覆盖、大容量的5G网络。毫米波相比于Sub 6GHz的时延更短,是Sub 6G频段的1/4。对于要求5G时延更高应用,如远程医疗手术、工业精密控制等场景,毫米波是一个更好的选项。

一直以来,作为无线电波的一种,毫米波并不起眼,比它频率低的微波传输距离远,在通讯领域大有作为,比它频率高的光波也广泛应用是数码、通讯等领域,唯有处于中间位置的毫米波无人问津。

毫米波指波长为1-10毫米的电磁波,毫米波有极高的带宽,可利用总带宽高达135GHz,是传统微波波段带宽之和的5倍,在频段资源紧张的今天有巨大吸引力。其次毫米波的波束很窄,能更精准地分辨目标物并还原目标物细节,与激光相比,毫米波对气候要求更低,与微波相比,毫米波元器件尺寸更小,毫米波设备更容易小型化。

但拥有如此多优点的毫米波,也有同样突出的缺点,那就是衰减严重,以及对器件精度的要求较高,也正是这两个缺点在过去制约了毫米波的发展。

没有一个技术只有优点没有缺点,毫米波也一样。它可能不是某些应用的最好选择,但却可能是其他应用唯一的选择。”高通中国区研发负责人徐晧在接受科技日报记者专访时强调,“当我们说毫米波有这样那样缺点时,要看到它同时有非常多的优点,关键要看设计人员能不能有效解决这些技术难点,也要看实际应用中,是不是需要毫米波这些优点,是不是能够找到比较好的应用场景利用好毫米波的这些优点。”

低频资源有限毫米波商用提上日程

徐晧说:“手机之所以在没有与任何看得见摸得着的东西相连接的情况下,还可以收到信号,就是因为自然界中存在着很多我们看不到也听不到的电磁波信号。”徐晧介绍,毫米波是指波长为1毫米到10毫米的电磁波。从声音到光之间,真实地存在着一大段我们平常感觉不到的频谱,这段频谱中有一段属于毫米波。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭