当前位置:首页 > 半导体 > 英飞凌
[导读]如何评估IGBT模块的损耗与结温?英飞凌官网在线仿真工具IPOSIM,是IGBT模块在选型阶段的重要参考。这篇文章将针对IPOSIM仿真中的散热器热阻参数Rthha,给大家做一些清晰和深入的解析。

如何评估IGBT模块的损耗与结温?英飞凌官网在线仿真工具IPOSIM,是IGBT模块在选型阶段的重要参考。这篇文章将针对IPOSIM仿真中的散热器热阻参数Rthha,给大家做一些清晰和深入的解析。

· IPOSIM中Rthha定义:折算到每个Switch(开关)的散热器热阻

· 折算思路:对于常规模块,先确定散热器的总热阻,再根据散热器包含的Switch数量,折算出热阻Rthha。对于PIM模块,其散热器热阻需要额外计算。

一、 两电平仿真中的Rthha的定义与设置

在两电平逆变拓扑中,每个Switch基本单元为:T1+D1

仿真看世界之IPOSIM的散热器热阻Rthha解析

两电平举例说明:3XFF600R12KE4 per Inverter

仿真看世界之IPOSIM的散热器热阻Rthha解析

(FF600R12KE4)

62mm封装的半桥模块如上,三个半桥模块置于散热器,组成完整的三相逆变拓扑。假设每个模块200W损耗,散热器的温升30℃,则散热器总热阻为30℃/(200W*3)=0.05K/W。

散热器总共包含了6个Switch基本单元,因此IPOSIM中Rthha为:0.05*6=0.30K/W。

二、 三电平仿真中的Rthha的定义与设置

三电平的拓扑相对复杂一些,以常见的三种拓扑NPC1、NPC2和ANPC为例,分别进行说明:

仿真看世界之IPOSIM的散热器热阻Rthha解析

在NPC1拓扑中,每个Switch基本单元为:T1+D1+T2+D2+D5

仿真看世界之IPOSIM的散热器热阻Rthha解析

在NPC2拓扑中,每个Switch基本单元为:T1+D1+T2+D2

仿真看世界之IPOSIM的散热器热阻Rthha解析

在ANPC拓扑中,每个Switch基本单元为:T1+D1+T2+D2+T5+D5

三电平NPC1举例说明:

3XF3L150R07W2E3_B11 per Inverter

仿真看世界之IPOSIM的散热器热阻Rthha解析

(F3L150R07W2E3_B11)

在中小功率的三电平应用里,1个模块就能装下三电平的1个甚至3个桥臂。如Easy2B封装的三电平模块F3L150R07W2E3_B11,模块内为1个NPC1桥臂,3个模块置于散热器上,组成完整的三电平的三相逆变拓扑。假设每个Easy2B模块损耗200W, 散热器的温升30℃,则散热器总热阻为:30℃/(200W*3)=0.05K/W。

散热器总共包含了6个Switch基本单元,因此IPOSIM中Rthha为:0.05*6=0.30K/W。

三电平ANPC举例说明:

3XFF600R12ME4_B72 per phase

仿真看世界之IPOSIM的散热器热阻Rthha解析

(FF600R12ME4_B72)

在大功率的三电平应用里,往往需要多个模块才能组成1个三电平桥臂,如EconoDual3™封装的半桥模块FF600R12ME4_B72,3个模块组成1个ANPC或NPC1的桥臂,同样3个模块置于散热器上,只是三电平拓扑的某一相。假设3个模块损耗一共1200W,散热器温升50℃,则散热器总热阻为50℃/1200W=0.042K/W。

散热器只包含了2个Switch基本单元,因此IPOSIM中Rthha为:0.042*2=0.084K/W。

三、 变频器PIM模块仿真中的Rthha的定义与设置

在中小功率的变频器应用里,常常会用到PIM模块(包含整流、制动和逆变),如英飞凌最新IGBT7系列EasyPIM模块FP25R12W2T7_B11。

仿真看世界之IPOSIM的散热器热阻Rthha解析

如下图所示,是基于有限元热仿真的散热器表面温度分布:环境温度50℃,散热器表面最高温度82.3℃,其中每个整流二极管RD的损耗为3W,每个IGBT的损耗为10W,每个FWD的损耗为4W。

仿真看世界之IPOSIM的散热器热阻Rthha解析

考虑到模块内整流部分和逆变部分的相互影响,我们可分别计算逆变(Inv)和整流(Rec)部分的Switch对应的散热器热阻Rthha,其中:

PIM模块逆变部分的散热器热阻Rthha(Inv)=(82.3℃-50℃)/(10W+4W)=2.30K/W

PS:如果按散热器总热阻X6去折算逆变部分的热阻,会存在低估的情况:

散热器总热阻=(82.3℃-50℃)/(6*10W+6*4W+6*3W)=0.317K/W,

即0.317*6=1.90K/W,

比上述的热阻值2.30K/W偏低约18%。

散热器(总)热阻在不同工况下的变化

散热器的热阻并非定值,而是会随热源的分布变化而变化。

在一些大功率三电平的应用场合,一方面,各个模块之间的损耗不同;同时,模块间损耗差异还会随着工况不同而变化,因此,需要格外关注此时散热器总热阻的变化情况。如下,分别以常见白模块和黑模块三电平NPC1拓扑为例,进行简单的分析。

案例一

基于EconoDual™3白模块NPC1三电平,在某种水冷条件下,不同工况时的散热器总热阻:

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

案例二

基于PrimePACK™3黑模块NPC1三电平,在某种水冷条件下,不同工况时的散热器

总热阻:

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

因此,需考虑最恶劣工况下的热阻,或者在不同工况仿真时,采取不同的散热器热阻应对,以获得更准确的仿真结果。

综上所述,文章总结了在IPOSIM中Rthha参数,在两电平和三电平应用中的定义与设置,以及一些常见的问题,期望对大家如何正确选取Rthha进行准确的IPOSIM仿真有所帮助。

纸上得来终觉浅,绝知此事要躬行。

赶紧打开IPOSIM试试吧。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭