当前位置:首页 > 半导体 > 英飞凌
[导读]如何评估IGBT模块的损耗与结温?英飞凌官网在线仿真工具IPOSIM,是IGBT模块在选型阶段的重要参考。这篇文章将针对IPOSIM仿真中的散热器热阻参数Rthha,给大家做一些清晰和深入的解析。

如何评估IGBT模块的损耗与结温?英飞凌官网在线仿真工具IPOSIM,是IGBT模块在选型阶段的重要参考。这篇文章将针对IPOSIM仿真中的散热器热阻参数Rthha,给大家做一些清晰和深入的解析。

· IPOSIM中Rthha定义:折算到每个Switch(开关)的散热器热阻

· 折算思路:对于常规模块,先确定散热器的总热阻,再根据散热器包含的Switch数量,折算出热阻Rthha。对于PIM模块,其散热器热阻需要额外计算。

一、 两电平仿真中的Rthha的定义与设置

在两电平逆变拓扑中,每个Switch基本单元为:T1+D1

仿真看世界之IPOSIM的散热器热阻Rthha解析

两电平举例说明:3XFF600R12KE4 per Inverter

仿真看世界之IPOSIM的散热器热阻Rthha解析

(FF600R12KE4)

62mm封装的半桥模块如上,三个半桥模块置于散热器,组成完整的三相逆变拓扑。假设每个模块200W损耗,散热器的温升30℃,则散热器总热阻为30℃/(200W*3)=0.05K/W。

散热器总共包含了6个Switch基本单元,因此IPOSIM中Rthha为:0.05*6=0.30K/W。

二、 三电平仿真中的Rthha的定义与设置

三电平的拓扑相对复杂一些,以常见的三种拓扑NPC1、NPC2和ANPC为例,分别进行说明:

仿真看世界之IPOSIM的散热器热阻Rthha解析

在NPC1拓扑中,每个Switch基本单元为:T1+D1+T2+D2+D5

仿真看世界之IPOSIM的散热器热阻Rthha解析

在NPC2拓扑中,每个Switch基本单元为:T1+D1+T2+D2

仿真看世界之IPOSIM的散热器热阻Rthha解析

在ANPC拓扑中,每个Switch基本单元为:T1+D1+T2+D2+T5+D5

三电平NPC1举例说明:

3XF3L150R07W2E3_B11 per Inverter

仿真看世界之IPOSIM的散热器热阻Rthha解析

(F3L150R07W2E3_B11)

在中小功率的三电平应用里,1个模块就能装下三电平的1个甚至3个桥臂。如Easy2B封装的三电平模块F3L150R07W2E3_B11,模块内为1个NPC1桥臂,3个模块置于散热器上,组成完整的三电平的三相逆变拓扑。假设每个Easy2B模块损耗200W, 散热器的温升30℃,则散热器总热阻为:30℃/(200W*3)=0.05K/W。

散热器总共包含了6个Switch基本单元,因此IPOSIM中Rthha为:0.05*6=0.30K/W。

三电平ANPC举例说明:

3XFF600R12ME4_B72 per phase

仿真看世界之IPOSIM的散热器热阻Rthha解析

(FF600R12ME4_B72)

在大功率的三电平应用里,往往需要多个模块才能组成1个三电平桥臂,如EconoDual3™封装的半桥模块FF600R12ME4_B72,3个模块组成1个ANPC或NPC1的桥臂,同样3个模块置于散热器上,只是三电平拓扑的某一相。假设3个模块损耗一共1200W,散热器温升50℃,则散热器总热阻为50℃/1200W=0.042K/W。

散热器只包含了2个Switch基本单元,因此IPOSIM中Rthha为:0.042*2=0.084K/W。

三、 变频器PIM模块仿真中的Rthha的定义与设置

在中小功率的变频器应用里,常常会用到PIM模块(包含整流、制动和逆变),如英飞凌最新IGBT7系列EasyPIM模块FP25R12W2T7_B11。

仿真看世界之IPOSIM的散热器热阻Rthha解析

如下图所示,是基于有限元热仿真的散热器表面温度分布:环境温度50℃,散热器表面最高温度82.3℃,其中每个整流二极管RD的损耗为3W,每个IGBT的损耗为10W,每个FWD的损耗为4W。

仿真看世界之IPOSIM的散热器热阻Rthha解析

考虑到模块内整流部分和逆变部分的相互影响,我们可分别计算逆变(Inv)和整流(Rec)部分的Switch对应的散热器热阻Rthha,其中:

PIM模块逆变部分的散热器热阻Rthha(Inv)=(82.3℃-50℃)/(10W+4W)=2.30K/W

PS:如果按散热器总热阻X6去折算逆变部分的热阻,会存在低估的情况:

散热器总热阻=(82.3℃-50℃)/(6*10W+6*4W+6*3W)=0.317K/W,

即0.317*6=1.90K/W,

比上述的热阻值2.30K/W偏低约18%。

散热器(总)热阻在不同工况下的变化

散热器的热阻并非定值,而是会随热源的分布变化而变化。

在一些大功率三电平的应用场合,一方面,各个模块之间的损耗不同;同时,模块间损耗差异还会随着工况不同而变化,因此,需要格外关注此时散热器总热阻的变化情况。如下,分别以常见白模块和黑模块三电平NPC1拓扑为例,进行简单的分析。

案例一

基于EconoDual™3白模块NPC1三电平,在某种水冷条件下,不同工况时的散热器总热阻:

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

案例二

基于PrimePACK™3黑模块NPC1三电平,在某种水冷条件下,不同工况时的散热器

总热阻:

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

仿真看世界之IPOSIM的散热器热阻Rthha解析

因此,需考虑最恶劣工况下的热阻,或者在不同工况仿真时,采取不同的散热器热阻应对,以获得更准确的仿真结果。

综上所述,文章总结了在IPOSIM中Rthha参数,在两电平和三电平应用中的定义与设置,以及一些常见的问题,期望对大家如何正确选取Rthha进行准确的IPOSIM仿真有所帮助。

纸上得来终觉浅,绝知此事要躬行。

赶紧打开IPOSIM试试吧。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

【2024年4月22日,中国上海讯】近日,英飞凌宣布其首个向客户开放使用的实验室——“英飞凌电源应用实验室”在位于上海张江的英飞凌大中华区总部正式启动。该电源应用实验室将帮助英飞凌客户更高效地孵化电源及各类消费电子项目的...

关键字: 英飞凌 电源应用实验室

【2024年2月26日,慕尼黑和台北讯】英飞凌科技股份公司(FSE代码:IFX/ OTCQX代码:IFNNY)和日月光投资控股股份有限公司(TAIEX代码:3711/ NYSE代码:ASX)近日宣布签署最终协议。根据协议...

关键字: 半导体 英飞凌

AIGC时代给数据中心算力提出了新的挑战,为了实现更大规模的模型计算,数据中心需要更强大的算力芯片和更多的并行策略,这分别意味着更高的系统功耗和通信带宽。

关键字: 英飞凌 POL DC-DC 数据中心 GPU

如何把握住2024年的行业新机遇,实现技术突破创新,赋能各类新兴应用的发展?新一年伊始,我们采访到了英飞凌科技全球高级副总裁暨大中华区总裁、英飞凌电源与传感系统事业部大中华区负责人潘大伟,他和我们分享了英飞凌这一年来的成...

关键字: 英飞凌 功率半导体 SiC GaN review2023

现代功率系统需要高效且设计紧凑的稳压器。为了应对这一挑战,英飞凌面向服务器、AI、数据通信、电信和存储市场推出了TDA388xx系列产品。最新的12 A和 20 A同步降压稳压器采用快速恒定导通时间(COT)控制模式来优...

关键字: 英飞凌 DC-DC POL 同步降压稳压器

IGBT模块在电力电子领域中扮演着重要的角色,它是一种基于绝缘栅双极晶体管(Insulated Gate Bipolar Transistor)的功率模块。IGBT模块的作用是将电能进行转换和控制,广泛应用于电机驱动、电...

关键字: IGBT模块 电力电子 晶体管

近日,第11届EEVIA年度中国硬科技媒体论坛暨产业链研创趋势展望研讨会在深圳召开。英飞凌电源与传感系统事业部应用管理高级经理徐斌在会上发布了主题为“英飞凌一站式系统解决方案,助力户用储能爆发式发展”的演讲。

关键字: 英飞凌 储能 ESS SiC

业内消息,英飞凌将投资 50 亿欧元(约合 54.65 亿美金)扩建其位于马来西亚居林(Kulim)的 200mm 的 SiC 工厂。

关键字: 英飞凌 SiC

业内最新消息,昨天台积电和博世公司(Bosch)、英飞凌科技(Infineon)以及恩智浦半导体(NXP)共同宣布,将合资在德国萨克森州首府德累斯顿投资成立欧洲半导体制造公司(ESMC)以提供先进半导体制造服务,总投资超...

关键字: 台积电 博世 英飞凌 恩智浦
关闭
关闭