当前位置:首页 > 芯闻号 > 技术解析
[导读]上篇文章中,小编对太阳能电池产业、太阳能电池特性有所阐述。为增进大家对太阳能电池的认识,本文将基于两点介绍有机太阳能电池:1、有机太阳能电池结构原理,2、有机太阳能电池应用前景。

上篇文章中,小编对太阳能电池产业、太阳能电池特性有所阐述。为增进大家对太阳能电池的认识,本文将基于两点介绍有机太阳能电池:1、有机太阳能电池结构原理,2、有机太阳能电池应用前景。如果你对太阳能电池具有兴趣,不妨继续往下阅读哦。

一、有机太阳能电池结构原理

太阳能电池,是一种利用太阳光直接发电的光电半导体薄片,又称为“太阳能芯片”或“光电池”,它只要被满足一定照度条件的光照度,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏(Photovoltaic,缩写为PV),简称光伏。而有机太阳能电池,便是太阳能电池中的一种。有机太阳能电池,顾名思义,就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流, 实现太阳能发电的效果。有机太阳能电池作为新型太阳能电池器件,具备柔性、质量轻、颜色可调、可溶液加工、大面积印刷制备等特点,是目前太阳能电池研究领域的热点。但是效率低是限制其大规模应用的主要原因。下面,我们正式看一下有机太阳能电池的结构原理。

1 有机太阳能电池的原理

有机太阳能电池以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流。主要的光敏性质的有机材料均具有共轭结构并且有导电性,如酞菁化合物、卟啉、菁(cyanine)等。

2 有机太阳能电池的几种结构

有机太阳能电池按照半导体的材料可以分为单质结结构、P-N 异质结结构、染料敏化纳米晶结构。

3 单质结结构

单质结结构是以Schotty 势垒为基础原理而制作的有机太阳能电池。其结构为玻璃/金属电极/染料/金属电极,利用了两个电极的功函不同,可以产生一个电场,电子从低功函的金属电极传递到高功函电极从而产生光电流。由于电子—空穴均在同一种材料中传递,所以其光电转化率比较低。

4 P—N 异质结结构是指这种结构具有给体-受体(N 型半导体与P 型半导体)的异质结结构,结构如图5。其中半导体的材料多为染料,如酞菁类化合物、苝四甲醛亚胺类化合物,利用半导体层间的D/A界面(Donor——给体,Acceptor——受体)以及电子—空穴分别在不同的材料中传递的特性,使分离效率提高。Elias Stathatos 等人结合无机以及有机化合物的优点制得的太阳能电池光电转化率在5%~6%。

5 NPC( nanocrystaline photovoltaic cell)染料敏化纳米晶

染料敏化太阳能电池(DSSC)主要是指以染料敏化的多空纳米结构TiO2 薄膜为光阳极的一类太阳能电池。它是仿生植物叶绿素光合作用原理的太阳能电池。而NPC 太阳能电池可选用适当的氧化还原电解质从而使光电效率提高,一般可稳定于10%,并且纳米晶TiO2 制备简便,成本低廉,寿命可观,具有不错的市场前景。

二、有机太阳能电池应用前景

已知太阳光照射到地球上的平均能量密度为1376W/平方米,假设能量转化率已达到为30%。城市每个三口之家每天的平均用电量为3kw·h,平均太阳光照时间4h,则只需不足2 平方米太阳能电池板即可为之提供充足的电力。另一方面,家庭电路最大熔断电流一般在20A 左右,最大瞬时功率4400W。达到此瞬时功率只需10 平方米左右的太阳能电池板即可。

工厂、学校的等大型耗电场所则依靠水利、风力发电、核能发电等途径获得电力。这种多层次的供电体系既可以保证社会正常运转,也充分利用了清洁能源。

由上述计算我们也以大致看出,太阳能电池只能作为辅助能源,而不能作为主要能源使用。因为太阳能虽然总量很大,但受场地及成本等因素限制不可能达到很高的功率,难以满足高耗电场所的电力需求,而且太阳能受天气情况等因素影响较大,并不十分稳定,所以利用它做主要能源是不现实的。

以上便是此次小编带来的“太阳能电池”相关内容,通过本文,希望大家对有机太阳能电池结构原理和有机太阳能电池应用前景具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭