当前位置:首页 > > 21ic电子网
[导读]最近有点忙,就来个简单的点吧。 我们来看一个问题:为什么开关电源中,一般用肖特基二极管续流,不用快恢复二极管呢? 答案主要有两点:一是肖特基二极管导通电压更低。二是肖特基二极管速度更快,反向恢复时间更小。如此一来,使用肖特基二极管肯定损耗是更小的,温度更低,也不会烫成狗,这样整个...

最近有点忙,就来个简单的点吧。 我们来看一个问题:为什么开关电源中,一般用肖特基二极管续流,不用快恢复二极管呢? 答案主要有两点:一是肖特基二极管导通电压更低。二是肖特基二极管速度更快,反向恢复时间更小。如此一来,使用肖特基二极管肯定损耗是更小的,温度更低,也不会烫成狗,这样整个开关电源效率也更高。 上面这一段话,想必大家都知道,不过仅从文字上面看,有一种模糊,不那么透彻的感觉,今天就主要结合实例,对比肖特基和快恢复二极管两者的差异。 之所以想写下这个,还是在上期写文章时,无意中看到了二极管反向恢复时间的影响。
当时在文章中仅仅是提了一下,不过个人觉得这个还是挺重要的,所以我就记录了下来,这次就专门来看一下。 实验电路就用上次的Boost电路,如下图:
为什么要用肖特基二极管续流?
这次我们重点关注图中的二极管,当然了,这个二极管一般使用肖特基二极管,图中使用的是MBR735,也是一个肖特基二极管。

我们看一下二极管的电流和电压波形,如下图:
为什么要用肖特基二极管续流?
可以看到,这个肖特基二极管的导通时间是0.5V左右。

另一方面,二极管在导通到截止切换时,电流有一个向下的脉冲,峰值可以达到-1.2A,这个是反向电流。
也就是说,二极管存在反向导通的时间,并不能在电压反向时马上截止。我们把下冲拉开看看,如下图:
为什么要用肖特基二极管续流?
大的负电流持续的时间大概是2ns左右,在6ns时电流完全降低到0。

为什么会有这个负电流呢?
这是因为肖特基二极管存在结电容,这个结电容大概是200pF左右,比硅二极管要大(硅一般是20pF左右,这里的数值仅供参考,不同二极管不同),电容电压发生变化,自然会有充放电发生,就形成了电流。
也有个说法是肖特基二极管也存在反向恢复时间,只不过很短,小于10ns。
不过我的看法是肖特基是不存在反向恢复时间的,因为反向恢复时间一般认为是少数载流子的存储效应导致的,而肖特基二极管是由肖特基结构成的,不存在少子。
但是肖特基二极管它存在结电容,而且这个结电容比硅二极管要大,这个结电容引起的效果有点像是反向恢复时间。
好了,这个定义就不纠结了,总之意思大概就是,肖特基二极管的反向电流会比较小,持续时间也会比较短。
以上是肖特基二极管的情况,下面看看超快恢复二极管。 换为超快恢复二极管
为什么要用肖特基二极管续流?电路只将二极管换成了超快恢复二极管MURS320。

从它的手册里面可以知道,反向恢复时间最大是35ns,这在二极管中这已经是相当小的。
我们也看一下它的电流和电压波形。
为什么要用肖特基二极管续流?
可以看到,导通电压要更高一些,是0.7V左右。

这个下冲就更明显了,直接达到了-38A左右,有点吓人。
我们也把下冲拉开看看。
为什么要用肖特基二极管续流?
可以看到,持续的时间大概是5ns左右。

这里可能有一个疑问:前面不是说这个管子反向恢复时间是35ns左右吗?怎么现在这么小?
我的想法是,反向恢复时间是在一定条件下测试的,反向电流是有限制的,如下图:
为什么要用肖特基二极管续流?
而我们这个boost电路,肯定跟这个测试电路是不同的,在反向时,并没有什么别的器件能阻碍反向电流,所以反向电流会比较大。
并且,二极管反向恢复时间,就是正向导通时PN结存储的少数载流子电荷耗尽所需要的时间。
反向截止之前,正向电流一定,那么存储的电荷就一定。截止切换时,反向电流越大,那么存储的电荷消耗得就越快,进而导致持续的时间越短,所以我们看起来的反向恢复时间与二极管手册里面有较大区别。
具体二极管反向恢复时间,我以前也专门写了篇文章专门解释,有兴趣可以看看。《二极管结电容和反向恢复时间都是怎么来的》  超快恢复换成普通硅二极管会怎么样?
结果是:换成普通硅二极管之后,这个boost直接工作异常,输出电压不对了,直接gg。。。
原因想想也很简单,普通硅二极管的反向恢复时间都到了us级别了,开关频率300Khz,周期就是3.3us,半个周期是1.67us,在这个频率下,二极管基本可以看作是一直导通了。
这个就不截图演示了。 小结本节主要从波形上面来对比肖特基和超快恢复二极管之间的区别,希望同志们在头脑中对于二极管反向恢复时间有一个更为清晰的认识。 文章中的仿真原文件,芯片手册文档等。我都放在了网盘,微信公众号后台回复“炼成之路”即可下载了,东西有点多。
文件所在目录是:炼成之路-->电源-->为什么要用肖特基二极管续流。
来源:硬件工程师炼成之路版权归原作者所有,如有侵权,请联系删除。

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭