当前位置:首页 > 单片机 > 8号线攻城狮
[导读]▼点击下方名片,关注公众号▼为什么要进行电平转换?电平转换针对的是两个或者两个以上的CPU之间的通讯需要进行的一种转换技术,两个CPU如果供电电压不一样,比如一个是1.2V,另一个是3.3V,那么在电平不匹配的情况下工作,会造成信号传输出错;如果二者电压相差较大,严重的可能会损坏...

点击下方名片,关注公众号

为什么要进行电平转换

电平转换针对的是两个或者两个以上的CPU之间的通讯需要进行的一种转换技术,两个CPU如果供电电压不一样,比如一个是1.2V,另一个是3.3V,那么在电平不匹配的情况下工作,会造成信号传输出错;如果二者电压相差较大,严重的可能会损坏芯片。

电平转换电路两种设计方向:

一、专用的电平转换芯片

芯片厂商提供的多种多样的电平转换芯片为不同电压域之间的数据通讯及控制提供了方便。如下图 1 是一款比较常用的转换芯片,作为一款双电源供电的双向电平转换芯片,通过检测外部端口的驱动电流来判别转换方向,因此不需要外部的方向控制管脚来选择控制器件转换的方向。工程师在使用它时非常省事,软件上也无需考虑何时应该去更改它的转换方向。若想了解更多关于此类芯片的具体内容,可以在各类芯片网站上直接搜索电平转换芯片即可。

图 1 双电源供电的双向电平转换芯片

二、分立元器件搭建

分立器件搭建电平转换电路的方式有很多,如下图 2 为一款单项电平转换的分立电路。其实现原理如下,左侧IN为输入,右侧OUT为输出,VDDA与VDDB分别为相互转换的两个不同的电压域。当IN输入0V时,三极管Q1导通,OUT被拉低到接近0V电平,实现低电平转换;当IN输入高电平(VDDA)时,三极管Q1截止,此时OUT被上拉至VDDB,从而实现高电平转换。此电路属于单向转换电路,转换方向为IN输入,OUT输出,简单易用。

图 2 单向电平转换电路 a

下面再介绍一种单向转换的电路,如下图 3 实现原理如下:当输入IN为低电平时,三极管Q1关断,三极管Q2导通,输出OUT被拉低,从而实现低电平转换;当输入IN为高电平(VDDA)时,三极管Q1导通,从而三极管Q2被拉低关断,从而输出OUT被R4拉高到VDDB,从而实现高电平转换。此电路只能实现左侧IN输入,右侧OUT输出,不能反向转换。

图 3 单向电平转换电路 b

最后再介绍一种双向转换的电路,此电路比较常用,相信很多同行见到过。

图 4 双向电平转换电路

如上图 4 所示是常用的分立器件搭的电平转换电路,具体工作过程如下:

1、当Net1输出高电平时,MOS管Q1的Vgs=0,MOS管关闭,Net2被电阻R2上拉到5V;

2、当Net1输出低电平时,MOS管Q1的Vgs=3.3V,大于导通电压阈值,MOS管导通,Net2通过MOS管被拉低到低电平;

3、当Net2输出高电平时,MOS管Q1的Vgs不变,MOS管维持关闭状态,Net1被电阻R1上拉到3.3V;

4、当Net2输出低电平时,MOS管Q1不导通,MOS管先经过体二极管把Net1拉低到低电平,此时Vgs≈3.3V,MOS管导通,进一步拉低Net的电压;

最后,关于电平转换这部分内容就先讲这么多,当然这只是电平转换相关的冰山一角,电路设计中任何一块拎出来都够讲好久,这也正是电子电路吸引我的地方。平时不妨抽出时间对知识进行一个小小的整理,一来归纳,二来下次遇到的时候方便使用,节约时间。各位同仁有更好的想法可以评论区留言。


—— The End ——微信公众号后台回复关键字“加群”,添加小编微信,拉你入技术群。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭