当前位置:首页 > 公众号精选 > Linux阅码场
[导读]编者按:笔者遇到一个非常典型的问题,应用在X86正常运行,在AArch64上JVM就会崩溃。这个典型的JVM内部问题。笔者通过分析最终定位到是由于JVM中模板解释器代码存在bug导致在弱内存模型的平台上Crash。在分析过程中,涉及到非常多的JVM内部知识,比如对象头、GC复制算...

编者按:笔者遇到一个非常典型的问题,应用在 X86 正常运行,在 AArch64 上 JVM 就会崩溃。这个典型的 JVM 内部问题。笔者通过分析最终定位到是由于 JVM 中模板解释器代码存在 bug 导致在弱内存模型的平台上 Crash。在分析过程中,涉及到非常多的 JVM 内部知识,比如对象头、GC 复制算法操作、CAS 操作、字节码执行、内存序等,希望对读者有所帮助。本文介绍了一般分析 JVM crash 的方法,并且深入介绍了为什么在 aarch64 平台上引起这样的问题,最后还给出了修改方法并推送到上游社区中。**对于使用非毕昇 JDK 的其他 JDK 只有在 jdk8u292、jdk11.0.9、jdk15以后的版本才得到修复,读者使用时需要注意版本选择避免这类问题发生。

背景知识

java 程序在发生 crash 时,会生成 hs_err_pid.log 文件,以及 core 文件(需要操作系统开启相关设置),其中 hs_err 文件以文本格式记录了 crash 发生位置的小范围精确现场信息(调用栈、寄存器、线程栈、致命信号、指令上下文等)、jvm 各组件状态信息(java 堆、jit 事件、gc 事件)、系统层面信息(环境变量、入参、内存使用信息、系统版本)等,精简记录了关键信息。而 core 文件是程序崩溃时进程的二进制快照,完整记录了崩溃现场信息,可以使用 gdb 工具来打开 core 文件,恢复出一个崩溃现场,方便分析。

约束

文中描述的问题适用于 jdk8u292 之前的版本。

现象

某业务线隔十天半个月总会报过来 crash 问题,crash 位置比较统一,都是在某处执行 young gc 的上下文中,crash 的直接原因是 java 对象的头被写坏了,比如这样:

而正常的对象头由 markoop 和 metadata 两部分组成,前者存放该对象的 hash 值、年龄、锁信息等,后者存放该对象所属的 Klass 指针。这里关注的是 markoop,64 位机器上它的具体布局如下:

每种布局中每个字段的详细含义可以在 jdk 源码 jdk8u/hotspot/src/share/vm/oops/markOop.hpp 中找到,这里简单给出结论就是 gc 阶段一个正常对象头中的 markoop 不可能是全 0,而是比如这样:

此外,crash 时间上也有个特点:基本每次都发生在程序刚启动时的几秒内。

分析

发生 crash 的 java 对象有个一致的特点,就是总位于 eden 区,我们仔细分析了 crash 位置的 gc 过程逻辑,特别是会在 gc 期间修改对象头的相关源码更是重点关注对象,因为那块代码为了追求性能,使用了无锁编程:

补充介绍一下 CAS(Compare And Swap),CAS 的完整意思是比较并替换,并且确保整个操作原子性。CAS 需要 3 个操作数:内存地址 dst,比较值 cmp,要更新的目标值 value。当且仅当内存地址 dst 上的值跟比较值 cmp 相等时,将内存地址 dst 上的值改写为 value,否则就什么都不做,其在 aarch64 上的汇编实现类似如下:

然而我们经过反复推敲,这块 gc 逻辑似乎无懈可击,而且位于 eden 区也意味着没有被 gc 搬移过的可能性,这个问题在很长时间里陷入了停滞……

直到某一天又收到了一个类似的 crash,这个问题才迎来了转机。在这个 crash 里,也是 java 对象的头被写坏了,但特殊的地方在于,头上的错误值是 0x2000,凭着职业敏感,我们猜测这个特殊的错误值是否来自这个 java 对象本身呢?这个对象的 Java 名字叫 DynamicByteBuffer,来自某个基础组件。反编译得到了问题类 DynamicByteBuffer 的代码:

再结合 core 信息中其他正常 DynamicByteBuffer 对象的布局,确定了这个特殊的 0x2000 值原本应该位于 segmentSize 字段上,而且从代码中注意到这个 segmentSize 字段是 final 属性,意味着其值只可能在实例构造函数中被设置,使用 jdk 自带的命令 javap 进行反汇编,得到对应的字节码如下:

putfield 这条字节码的作用是给 java 对象的一个字段赋值,在红框中的语义就是给 DynamicByteBuffer 对象的 segmentSize 字段赋值。

分析到这里,我们做一下小结,crash 的第一现场并非在 gc 上下文中,而是得往前追溯,发生在这个 java 对象被初始化期间,这期间在初始化它的 segmentSize 字段时,因为某种原因,0x2000 被写到了对象头上。

接下来继续分析, JDK 在发生 crash 时会自动生成的 hs_err 日志,其中有记录最近发生的编译事件 “Compilation events (250 events)”,从中没有发现 DynamicByteBuffer 构造函数相关的编译事件,所以可以推断 crash 时 DynamicByteBuffer 这个类的构造函数尚未被编译过(由于 crash 发生在程序启动那几秒,JIT 往往需要预热后才会介入,所以可以假设记录的比较完整),这意味着,它的构造函数只会通过模板解释器去执行,更具体地说,是去执行模板解释器中的 putfield 指令来把 0x2000 写到 segmentSize 字段位置。

具体怎么写其实很简单,就是先拿到 segmentSize 字段的偏移量,根据偏移量定位到写的位置,然后写入。然而 JVM 的模板解释器在实现这个 putfield 指令时,额外增加了一条快速实现路径,在 runtime 期间会自动(具体的时间点是 “完整” 执行完第一次 putfield 指令后)从慢速路径切到快速路径上,这个切换操作的实现全程没有加锁,同步完全依赖 barrier,由于整个过程比较复杂,这里首先给一个比较容易理解的并行流程图:

注:图中 bcp 指的是 bytecode pointer,就是读字节码。

上图表示接近同一时间点前后,两条并行流分别构建一个 DynamicByteBuffer 类型的对象过程中,各自完成 segmentSize 字段赋值的过程,用 Java 代码简单示意如下:

其中第一条执行流走的慢速路径,第二条走的快速路径,可以留意到,红色标识的是几次公共内存的访存操作,barrier 就分布在这些位置前后(标在下图中)。

接下来再给一个更加精确一点的指令流模型:

简单介绍一下这个设计模型:

  1. 线程从记录了指令的内存地址 bcp(bytecode pointer) 上取出指令,然后跳转到该指令地址上执行,当取出的指令是 bcp1(比如 putfeild 指令的慢速路径)时就是图中左边的指令流;
  2. 左边的指令流就是计算出字段的 offset 并 str 到指定内存地址,然后插入 barrier,最后将 bcp2 指令(比如 putfeild 指令的快速路径)覆写到步骤 1 中的内存地址 addr 上;
  3. 后续线程继续执行步骤 1 时,由于取出的指令变成了 bcp2,就改为跳转到图中右边的指令流;
  4. 右边的指令流就是直接取出步骤 2 中已经存到指定内存地址中的 offset。
回顾整个设计模型,左边的指令流通过一个等效于完整 dmb 的 barrier 来保证 str offset 和 str bcp2 这两条 str 指令的执行顺序并且全局可见;而右边的指令流中,ldr bcp 和 ldr offset 这两条 ldr 指令之间没有任何 barrier,设计者可能认为一个无条件跳转指令可以为两条 ldr 指令建立依赖,从而保证执行顺序,然而从实测结果来看是不成立的。

这里先来简单补充介绍一下内存顺序模型的概念,现代 CPU 为了提高执行效率,在指令的执行顺序上拥有很大的自主权,对每个独立的 CPU 来说,只要确保语义不变,实际如何执行都有可能,这种方式对于单个 CPU 来说没有问题,当放到多个 CPU 共享数据的时候,这种乱序执行的行为就会引发每个 CPU 看到数据的顺序不一致问题,导致跨 CPU 的程序逻辑乱套了。这就需要对读、写内存指令进行约束,来规范每个 CPU 看到的内存生效行为,由此提出了内存顺序模型的概念:

其中 ARM 采用的是一种弱内存模型,这种模型默认对读、写指令没有任何约束,需要由程序员自己通过插入 barrier 来手动保证。

再回到这个问题上,测试方式是在 ldr offset 指令后额外加了检测指令:

就是检查 offset 值是否为 0,如果为 0 则直接强制 crash(设计上保证了 java 对象的任何实例字段的 offset 不可能是 0)。

经过长时间测试,程序果然在这个位置触发了 crash!这说明上面提到的两条 ldr 指令不存在依赖关系,或者说这种依赖关系类似 ARMv8 手册中描述的条件依赖,并不能保证执行顺序。ldr offset 指令先于 ldr bcp 执行,使得读到一个非法的 offset 值 0。更说明了,这才是这个案例的第一案发现场!

找到了问题的根因后,解决方法也就顺利出炉了,那就是在两条 ldr 指令之间插入 barrier 来确保这两条 ldr 指令不发生乱序。实测证明,这种修复方案非常有效,这类 crash 现象消失。

详细的修复 patch 见 https://hg.openjdk.java.net/jdk/jdk/rev/b9529fcbbd33 。目前已经 backport 到 jdk8u292、jdk11.0.9、jdk15。

总结

Java 虚拟机 (JVM) 为了追求性能,大量使用了无锁编程进行设计,而且这么多年以来 JDK(特别是 JDK8)主要都是面向 X86 平台开发的,如今才慢慢的开始支持 aarch64 平台,所以 aarch64 弱内存序问题是我们面临的一个比较严峻的挑战。

后记

如果遇到相关技术问题(包括不限于毕昇 JDK),可以进入毕昇 JDK 社区查找相关资源(点击原文进入官网),包括二进制下载、代码仓库、使用教学、安装、学习资料等。毕昇 JDK 社区每双周周二举行技术例会,同时有一个技术交流群讨论 GCC、LLVM、JDK 和 V8 等相关编译技术,感兴趣的同学可以添加如下微信小助手,回复 Compiler 入群。

rc="https://img.21ic.com/weixin/tr/2021-08/10/821kojnm147.png">



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

(全球TMT2022年4月19日讯)为满足年轻消费者的需求,全新华为nova 9 SE配备了108MP高分辨率摄影、创意vlog体验、令人惊叹的设计和时尚前卫的元素。它是nova 9家族的最新成员。 使用Pet...

关键字: 华为 rc nova

深圳2022年4月18日 /美通社/ -- 为满足年轻消费者的需求,全新华为nova 9 SE配备了108MP高分辨率摄影、创意vlog体验、令人惊叹的设计和时尚前卫的元素。它是nova 9家族的最新成员。 使用Pet...

关键字: rc nova

生于海,长于山 上海2022年4月2日 /美通社/ -- 深受世界户外爱好者及探险家青睐的挪威国宝级户外品牌海丽汉森Helly Hansen(简称HH),创立以来始终秉持专业精神,专注打造高端专业户外装备。近...

关键字: se rc

基于价值观的领导力如何驱动企业发展 厦门2022年3月24日 /美通社/ -- 近期,RingCentral铃盛全球创新副总裁及大中华区总经理...

关键字: Asia rc

Petal Search带来了搜索引擎创新和增长,以提升全球用户体验 巴塞罗那2022年3月8日 /美通社/ -- 2月28日-3月3日,20...

关键字: 世界移动通信大会 rc

(全球TMT2022年3月9日讯)2月28日-3月3日,2022世界移动通信大会(简称“MWC”)在巴塞罗那召开。会上Petal Search(花瓣搜索)通过技术创新和生态能力升级,为消费者带来新的搜索体验。凭借不断增...

关键字: 世界移动通信大会 rc

(全球TMT2022年1月21日讯)消费耐用品和电子产品制造商Arçelik A.Ş.(以下简称“Arçelik”)在2022年《企业爵士》全球100指数评选中连续第二年入选,排名第57位。2022年全球100指数是全...

关键字: rc ce

该笔收购将增强这家物流执行技术领导企业的寻源、采购和品控实力  加利福尼亚州普莱森顿2022年1月5日 /美通社/ -- 供应链寻源、采购、执行和可见性技术解决方...

关键字: rc ce

(全球TMT2022年1月5日讯)供应链寻源、采购、执行和可见性技术解决方案领域领先供应商Blume Global宣布收购LiveSource,后者是一家为复杂制造商提供服务的领先型多企业供应链业务网络公司。LiveS...

关键字: 供应链 rc ce

加快我们的专家知识共享服务,由跨越5个亚洲办事处的小众目标招聘技术提供支持 东京2021年12月...

关键字: rc
关闭
关闭