当前位置:首页 > 电源 > 松哥电源
[导读] 0、前言锂离子电池包的内部,电芯和输出负载之间要串联功率MOSFET,使用专用的IC控制MOSFET的开关,从而对电芯的充、放电进行管理,如图1所示。在消费电子系统中,如手机电池包,笔记本电脑电池包等,带有控制IC、功率MOSFETFE管以及其他电子元件的电路系统称为电池充放电...

 

0、前言


锂离子电池包的内部,电芯和输出负载之间要串联功率MOSFET,使用专用的IC控制MOSFET的开关,从而对电芯的充、放电进行管理,如图1所示。在消费电子系统中,如手机电池包,笔记本电脑电池包等,带有控制IC、功率MOSFETFE管以及其他电子元件的电路系统称为电池充放保护板Protection Circuit Module (PCM),而对于动力电池的电池管理系统,则称为Battery Management System (BMS)。


图1:电池充放保护板电路结构

 

在电池充放保护板PCM中,充、放电分别使用一颗功率MOSFET,背靠背的串联起来。功率MOSFET管背靠背的串联的方式有二种:一种是二颗功率MOSFET的漏极连接在一起;另一种是二颗功率MOSFET的源极连接在一起。功率MOSFET管放置的位置也有二种方式:一种是二颗功率MOSFET放在电池的负端,也就是所谓的“地端”、低端(Low Side);另一种是二颗功率MOSFET放在电池的正端,高端(High Side)。功率MOSFET背靠背连接的不同方式、以及放在不同的位置,都有各自的优缺点,对应着系统的不同要求。


PCM需要低的导通电阻,同时要控制成本,通常采用N沟道的功率MOSFET。P沟道的功率MOSFET放在高端驱动简单灵活,有少量的应用也会采用P沟道MOSFET。但是,P沟道MOSFET的导通电阻很难做低,成本高,选型的型号和供应厂家也受限,因此,N沟道的功率MOSFET依然是主流的方案。


如果功率MOSFET有非常严格的体积和尺寸的要求,需要将二个功率MOSFET集成到一个芯片上,由于通用的功率MOSFET是垂直结构,衬底是漏极D,因此,使用漏极的背靠背结构就可以采用这样工艺。采用水平(横向)结构的功率MOSFET,可以使用漏极、或源极的背靠背结构,但是,水平结构的功率MOSFET导通电阻很难做低,做低导通电阻成本也高。


1、背靠背功率MOSFET配置方式及工作原理


1.1 地端、漏极背靠背的工作原理


充、放电管理的二颗N沟道的功率MOSFET放在地端,漏极背靠背连接在一起,是PCM常用的方案之一,如图2所示。其中,Q1为电池放电的功率MOSFET,Q2为电池充电的功率MOSFET,B 为电池(电芯)的正端,B-为电池(电芯)的负端,P 为电池包的正端,P-为电池包的负端,VSS为电池保护管理IC的地,电池的负端、VSS和Q1的源极连接在一起。PCM电路板工作前,Q1、Q2都是关断的。


图2:功率MOSFETFE放地端、漏极背靠背电路图


(1)充电

充电的时候,控制IC给出充电功率MOSFET管Q2的栅极驱动信号CO,Q2栅极驱动信号路径为:外部充电电路的正端->P ->B ->R1->VDD->CO驱动输出->Q1栅极->Q1源极->P-->外部充电电路的负端,形成完整的驱动回路,Q2开通,如图3所示。


图3:充电,CO输出Q2的驱动信号


Q2开通后,充电电流的路径为:P ->B ->B-->Q1体内寄生二极管->Q2沟道->P-,电池就可以充电,如图4所示。


图4:Q2导通的充电回路


为了减小Q1的损耗,Q2开通后,控制IC给出放电功率MOSFET管Q1的栅极驱动信号DO开通Q1,Q1的导通电阻RDSON低,导通损耗远低于体内寄生二级管的损耗,从而提高充电的效率。Q1驱动信号路径为:VDD->DO驱动输出->Q1栅极->Q1源极->B-->VSS,形成完整的驱动回路,Q1开通,如图5所示。


图5:充电,Q2导通后,DO输出Q1的驱动信号

 

Q2、Q1同时处于导通状态,充电电流的路径为:P ->B ->B-->Q1沟道->Q2沟道->P-,如图6所示。


图6:Q2、Q1导通的充电回路


(2)放电

放电的时候,控制IC给出放电功率MOSFET管Q1的栅极驱动信号DO,Q1栅极驱动信号路径为:VDD->DO驱动输出->Q1栅极->Q1源极->B-->VSS,形成完整的驱动回路,就可以打开Q1,如图7所示。


图7:放电,DO输出Q1的驱动信号


Q1开通后,放电的电流路径为:P-->Q2体内寄生二极管->Q1沟道->B-->B ->P ,电池就可以放电,如图8所示。


图8:Q1开通的放电回路

 

为了减小Q2的损耗,Q1开通后,控制IC给出充电功率MOSFET管Q2的栅极驱动信号CO开通Q2,Q2的导通电阻RDSON低,导通损耗远低于体内寄生二级管的损耗,从而提高电池使用的时间。Q2驱动信号路径为:VDD->CO驱动输出->Q2栅极->Q2源极->Q2体内寄生二极管->Q1沟道->B-->VSS,形成完整的驱动回路,Q2开通,如图9所示。


图9:放电,Q1导通后,CO输出Q2的驱动信号

 

Q1、Q2同时处于导通状态,放电电流的路径为:P-->Q2沟道->Q1沟道->B-->B ->P ,如图10所示。


图10:Q1、Q2导通的放电回路

 

1.2 地端、源极背靠背


N沟道的二颗功率MOSFET源极背靠背连接在一起,放在地端,如图11所示,这种结构在PCM里面应用较少,在一些负载开关以及通信系统的热插拔电路中,才有使用。


图11:功率MOSFET源极背靠背连接

 

1. 3 高端、漏极背靠背的工作原理


充、放电管理的二颗N沟道的功率MOSFET放在电源端,也就是高端,漏极背靠背连接在一起,也是是PCM常用的方案之一,如图12所示。其中,Q1为电池放电的功率MOSFET,Q2为电池充电的功率MOSFET。


N沟道的二颗功率MOSFET放在高端,MOSFET开通时,栅极G的电压要高于源极S的电压,源极S的电压为输入电源电压,因此,需要二个的充电泵,叠加在输入电源电压(MOSFET源极S),对它们进行浮驱。


图12:功率MOSFETFE放在高端,漏极背靠背

 

1.4 高端、源极背靠背的工作原理


充、放电管理的二颗N沟道的功率MOSFET放在电源端,也就是高端,源极背靠背连接在一起,如图13所示。N沟道的二颗功率MOSFET共源极,因此,只需要一个的充电泵,就可以对它们进行浮驱,这种结构应用于一些负载开关,如笔记本电脑内部输入电源电压的负载开关。


图13:功率MOSFETFE放在高端,源极背靠背

 

2、大电流多管并联


目前,为了提高电子系统的使用时间和待机时间,电池的容量越来越大,如3000mAh到5000mAh,甚至更大,为了缩短充电时间,提高充电的速度,通常使用快充,也就是使用更大的充电电流,如4A、5A、6A,甚至高到8A,对电池充电,这样PCM内部功率MOSFET的功耗非常大,温度非常高。为了降低功率MOSFET的温升,满足热设计的要求,保证功率MOSFET可靠运行,就会使用二个或多个功率MOSFET并联工作,如图14所示。


图14:大电流多管并联

 

3、冗余设计


根据安规LPS要求,如果PCM内部的功率MOSFET发生损坏而短路,那么接上充电器,输入电压直接加在电池上,可能发生危险。为了提高系统的安全,可以再串联一组背靠背的功率MOSFET,或使用其他的方案,形成冗余设计,当一级保护失效后,还有另一级保护,如图15、图16图17图18所示。


图15:二组功率MOSFET,一组放在高端,一组放在低端


图16:二组功率MOSFET放在低端


图17:功率MOSFET放在高端,电子保险丝


图18:功率MOSFET放在低端,电子保险丝


-- 未完待续,第二部内容见下期。


吸铁石,钢鞭和金锏

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭