当前位置:首页 > 单片机 > 架构师社区
[导读]本文大纲如下纵观全局我的英文名叫ReentrantReadWriteLock(后面简称RRW),大家喜欢叫我读写锁,因为我常年混迹在读多写少的场景。读写锁规范作为合格的读写锁,先要有读锁与写锁才行。所以声明了ReadWriteLock接口,作为读写锁的基本规范。之后都是围绕着规范...


本文大纲如下

33张图剖析ReentrantReadWriteLock源码

纵观全局

我的英文名叫ReentrantReadWriteLock(后面简称RRW),大家喜欢叫我读写锁,因为我常年混迹在读多写少的场景。

读写锁规范

作为合格的读写锁,先要有读锁与写锁才行。

所以声明了ReadWriteLock接口,作为读写锁的基本规范。

33张图剖析ReentrantReadWriteLock源码
之后都是围绕着规范去实现读锁与写锁。

读锁与写锁

WriteLock与ReadLock就是读锁和写锁,它们是RRW实现ReadWriteLock接口的产物。

但读锁、写锁也要遵守锁操作的基本规范。

所以WriteLock与ReadLock都实现了Lock接口。

33张图剖析ReentrantReadWriteLock源码
那么WriteLock与ReadLock对Lock接口具体是如何实现的呢?

自然是少不了我们的老朋友AQS了。

AQS

众所周知,要实现锁的基本操作,必须要仰仗AQS老大哥了。

AQS(AbstractQueuedSynchronizer)抽象类定义了一套多线程访问共享资源的同步模板,解决了实现同步器时涉及的大量细节问题,能够极大地减少实现工作,用大白话来说,AQS为加锁和解锁过程提供了统一的模板函数,只有少量细节由子类自己决定。

AQS简化流程图如下

33张图剖析ReentrantReadWriteLock源码
如果读者想深入AQS细节,可以看阿星的这篇文章:16张图揭开AQS

Sync

AQS为加锁和解锁过程提供了统一的模板函数,只有少量细节由子类自己决定,但是WriteLock与ReadLock没有直接去继承AQS

因为WriteLock与ReadLock觉得,自己还要去继承AQS实现一些两者可以公用的抽象函数,不仅麻烦,还有重复劳动。

所以干脆单独提供一个对锁操作的类,由WriteLock与ReadLock持有使用,这个类叫Sync

Sync继承AQS实现了如下的核心抽象函数

  • tryAcquire
  • release
  • tryAcquireShared
  • tryReleaseShared
33张图剖析ReentrantReadWriteLock源码
其中tryAcquire、release是为WriteLock写锁准备的。

tryAcquireShared、tryReleaseShared是为ReadLock读锁准备的,这里阿星后面会说。

上面说了Sync实现了一些AQS的核心抽象函数,但是Sync本身也有一些重要的内容,看看下面这段代码

33张图剖析ReentrantReadWriteLock源码
我们都知道AQS中维护了一个state状态变量,正常来说,维护读锁与写锁状态需要两个变量,但是为了节约资源,使用高低位切割实现state状态变量维护两种状态,即高16位表示读状态,低16位表示写状态。

关于读写锁状态设计具体细节可以看阿星的文章:ReentrantReadWriteLock的位运算

Sync中还定义了HoldCounter与ThreadLocalHoldCounter

  • HoldCounter是用来记录读锁重入数的对象
  • ThreadLocalHoldCounter是ThreadLocal变量,用来存放第一个获取读锁线程外的其他线程的读锁重入数对象
33张图剖析ReentrantReadWriteLock源码


如果读者对ThreadLocal不太熟悉,可以去看阿星的文章: 保姆级教学,22张图揭开ThreadLocal

公平与非公平策略

你看,人家ReentrantLock都有公平与非公平策略,所以ReentrantReadWriteLock也要有。

什么是公平与非公平策略?

因为在AQS流程中,获取锁失败的线程,会被构建成节点入队到CLH队列,其他线程释放锁会唤醒CLH队列的线程重新竞争锁,如下图所示(简化流程)。

33张图剖析ReentrantReadWriteLock源码
非公平策略是指,非CLH队列的线程与CLH队列的线程竞争锁,大家各凭本事,不会因为你是CLH队列的线程,排了很久的队,就把锁让给你。

公平策略是指,严格按照CLH队列顺序获取锁,一定会让CLH队列线程竞争成功,如果非CLH队列线程一直占用时间片,那就一直失败,直到时间片轮到CLH队列线程为止,所以公平策略的性能会更差。

33张图剖析ReentrantReadWriteLock源码
回到正题,为了支持公平与非公平策略,Sync扩展了FairSync、NonfairSync子类,两个子类实现了readerShouldBlock、writerShouldBlock函数,即读锁与写锁是否阻塞

33张图剖析ReentrantReadWriteLock源码
readerShouldBlock、writerShouldBlock函数在什么地方使用阿星后面会说。

ReentrantReadWriteLock全局图

最后阿星把前面讲过的内容,全部组装起来,构成下面这张图。

33张图剖析ReentrantReadWriteLock源码
有了全局观后,后面就可以深入细节逐个击破了。

深入细节

后面我们只要攻破5个细节就够了,分别是读写锁的创建、获取写锁、释放写锁、获取读锁、释放读锁。

ReentrantReadWriteLock的创建

读写锁的创建,会初始化化一系列类,代码如下

33张图剖析ReentrantReadWriteLock源码
ReentrantReadWriteLock默认是非公平策略,如果想用公平策略,可以直接调用有参构造器,传入true即可。

但不管是创建FairSync还是NonfairSync,都会触发Sync的无参构造器,因为Sync是它们的父类(本质上它们俩都是Sync)。

33张图剖析ReentrantReadWriteLock源码
因为Sync需要提供给ReadLock与WriteLock使用,所以创建ReadLock与WriteLock时,会接收ReentrantReadWriteLock对象作为入参。

33张图剖析ReentrantReadWriteLock源码
最后通过ReentrantReadWriteLock.syncSync交给了ReadLock与WriteLock。

获取写锁

我们遵守ReadWriteLock接口规范,调用ReentrantReadWriteLock.writeLock函数获取写锁对象。

33张图剖析ReentrantReadWriteLock源码
获取到写锁对象后,遵守Lock接口规范,调用lock函数获取写锁。

WriteLock.lock函数是由Sync实现的(FairSync或NonfairSync)。

33张图剖析ReentrantReadWriteLock源码
sync.acquire(1)函数是AQS中的独占式获取锁流程模板(Sync继承自AQS)。

33张图剖析ReentrantReadWriteLock源码
WriteLock.lock调用链如下图

33张图剖析ReentrantReadWriteLock源码
我们只关注tryAcquire函数,其他函数是AQS的获取独占式锁失败后的流程内容,不属于本文范畴,tryAcquire函数代码如下

33张图剖析ReentrantReadWriteLock源码
为了易于理解,阿星把它转成流程图

33张图剖析ReentrantReadWriteLock源码
通过流程图,我们发现了一些要点

  • 读写互斥
  • 写写互斥
  • 写锁支持同一个线程重入
  • writerShouldBlock写锁是否阻塞实现取决公平与非公平的策略(FairSync和NonfairSync)

释放写锁

获取到写锁,临界区执行完,要记得释放写锁(如果重入多次要释放对应的次数),不然会阻塞其他线程的读写操作,调用unlock函数释放写锁(Lock接口规范)。

WriteLock.unlock函数也是由Sync实现的(FairSync或NonfairSync)。

33张图剖析ReentrantReadWriteLock源码
sync.release(1)执行的是AQS中的独占式释放锁流程模板(Sync继承自AQS)。

33张图剖析ReentrantReadWriteLock源码
WriteLock.unlock调用链如下图

33张图剖析ReentrantReadWriteLock源码
再来看看tryRelease函数,其他函数是AQS的释放独占式成功后的流程内容,不属于本文范畴,tryRelease函数代码如下

33张图剖析ReentrantReadWriteLock源码
为了易于理解,阿星把它转成流程图

33张图剖析ReentrantReadWriteLock源码
因为同一个线程可以对相同的写锁重入多次,所以也要释放的相同的次数。

获取读锁

我们遵守ReadWriteLock接口规范,调用ReentrantReadWriteLock.readLock函数获取读锁对象。

33张图剖析ReentrantReadWriteLock源码
获取到读锁对象后,遵守Lock接口规范,调用lock函数获取读锁。

ReadLock.lock函数是由Sync实现的(FairSync或NonfairSync)。

33张图剖析ReentrantReadWriteLock源码
sync.acquireShared(1)函数执行的是AQS中的共享式获取锁流程模板(Sync继承自AQS)。

33张图剖析ReentrantReadWriteLock源码
ReadLock.lock调用链如下图

33张图剖析ReentrantReadWriteLock源码
我们只关注tryAcquireShared函数,doAcquireShared函数是AQS的获取共享式锁失败后的流程内容,不属于本文范畴,tryAcquireShared函数代码如下

33张图剖析ReentrantReadWriteLock源码
代码还挺多的,为了易于理解,阿星把它转成流程图

33张图剖析ReentrantReadWriteLock源码
通过流程图,我们发现了一些要点

  • 读锁共享,读读不互斥
  • 读锁可重入,每个获取读锁的线程都会记录对应的重入数
  • 读写互斥,锁降级场景除外
  • 支持锁降级,持有写锁的线程,可以获取读锁,但是后续要记得把读锁和写锁读释放
  • readerShouldBlock读锁是否阻塞实现取决公平与非公平的策略(FairSync和NonfairSync)

释放读锁

获取到读锁,执行完临界区后,要记得释放读锁(如果重入多次要释放对应的次数),不然会阻塞其他线程的写操作,通过调用unlock函数释放读锁(Lock接口规范)。

ReadLock.unlock函数也是由Sync实现的(FairSync或NonfairSync)。

33张图剖析ReentrantReadWriteLock源码
sync.releaseShared(1)函数执行的是AQS中的共享式释放锁流程模板(Sync继承自AQS)。

33张图剖析ReentrantReadWriteLock源码
ReadLock.unlock调用链如下图

33张图剖析ReentrantReadWriteLock源码
我们只关注tryReleaseShared函数,doReleaseShared函数是AQS的释放共享式锁成功后的流程内容,不属于本文范畴,tryReleaseShared函数代码如下

33张图剖析ReentrantReadWriteLock源码
为了易于理解,阿星把它转成流程图

33张图剖析ReentrantReadWriteLock源码
这里有三点需要注意

  • 第一点:线程读锁的重入数与读锁数量是两个概念,线程读锁的重入数是每个线程获取同一个读锁的次数,读锁数量则是所有线程的读锁重入数总和。

  • 第二点:AQS的共享式释放锁流程模板中,只有全部的读锁被释放了,才会去执行doReleaseShared函数

  • 第三点:因为使用的是AQS共享式流程模板,如果CLH队列后面的线程节点都是因写锁阻塞的读锁线程节点,会传播唤醒

小结

最后阿星做个小结,ReentrantReadWriteLock底层实现与ReentrantLock思路一致,它们都离不开AQS,都是声明一个继承AQSSync,并在Sync下扩展公平与非公平策略,后续的锁相关操作都委托给公平与非公平策略执行。

我们还发现,在AQS中除了独占式模板,还有共享式模板,它们在多线程访问共享资源的流程会有所差异,就如ReentrantReadWriteLock中读锁使用共享式,写锁使用独占式。

最后再捋一捋写锁与读锁的逻辑

  1. 读读不阻塞
  2. 写锁阻塞写之后的读写锁,但是不阻塞写锁之前的读锁线程
  3. 写锁会被写之前的读写锁阻塞
  4. 读锁节点唤醒会无条件传播唤醒CLH队列后面的读锁节点
  5. 写锁可以降级为读锁,防止更新丢失
  6. 读锁、写锁都支持重入

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭