当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘 要:物联网技术的发展带动了短距离无线通信技术的快速发展。文中详细介绍了RFID、蓝牙、ZigBee、超宽带等几种短距离无线通信技术及其应用领域。

引 言

物联网技术的出现,将信息互通的方式从H2H(Human to Human)扩展至M2M(Machine to Machine),是一种新的通过物物互联来实现感知世界的技术手段,开辟了信息化的新途径[1]。近年来,电子技术的发展产生了越来越多的便携式个人通讯设备和家用电器,人们希望实现各种电子产品和其他设备之间的信息交互。通过一个小型的、短距离的无线网络可以实现在任何时间、任何地点与任何人进行通信,从而促使RFID、蓝牙、ZigBee、UWB 等技术应运而生。短距离无线通信技术作为物联网架构体系的主要支撑技术得到了迅猛的发展,应用范围逐步扩大[2]。

1 几种短距离无线通信技术

短距离无线通信不存在一个严格的定义,它的范围很广泛,通过无线电波传输信息的通信双方传输距离限制在较小范围内,就可以称为短距离无线通信 [3],它主要关注建立局部范围内临时性的物联网通信。短距离无线通信技术有三个显著特点:第一个特点是低成本,工作频率是免付费的 ISM 频段; 第二个特点是低功耗,无线发射器的发射功率一般在 100 mW 以内 ;第三个特点是对等通信,通信距离大多在几十米或上百米之内。

目前,射频识别(RFID)技术、蓝牙(Bluetooth)技术、ZigBee 技术、超宽带(UWB)技术已被广泛应用在短距离无线通信技术中。

1.1 射频识别(RFID)技术

射频识别(RFID)技术是一种无需直接接触的自动识别技术,它是采用无线射频技术对物体对象进行非接触式操作, 并能够自动识别的无线通信系统 [4]。标签、读写器、天线三部分构成一个最基本的RFID 系统,该系统的工作原理是标签与读写器之间发送具有空间耦合、传输特性的射频信号, 通过天线完成对物品的自动识别。

RFID 技术的主要特点为 :自动读取,实时显示,简单方便,应用领域广,安全性能高。

1.2 蓝牙(Bluetooth)技术

蓝牙技术是一种低功率短距离的无线连接技术标准,该技术采用较低的成本完成设备间的无线通信,天线单元、链路控制单元、链路管理单元和软件单元四部分组成一个蓝牙系统 [5,6]。蓝牙技术的实质是要建立一个通用的无线电空中接口和控制软件的统一标准,使得通信技术和计算机技术完美结合,在没有电缆连接的情况下,不同厂家生产的便携式设备可以在短距离范围内拥有互相通信的功能。蓝牙技术的出现推动和拓展了无线通信的应用领域。

蓝牙技术的主要特点是 :低功率,低成本,工作频段为全球通用的 2.4 GHz,可同时传输音频和数据,具有很好的抗干扰能力。

1.3 ZigBee技术

ZigBee 技术是一种新兴的短距离、低速率、低功耗、低成本的无线网络技术,是一种介于无线标记技术和蓝牙技术之间的技术提案,该技术依据的研发标准是IEEE802.15.4 无线标准[7,8]。ZigBee 技术主要应用在短距离范围内且数据传输速率要求不高的电子设备之间,通过多个ZigBee 节点的部署, 建立一个无线传感器网络,达到数据信息传输的目的。

ZigBee 技术特点:数据传输速率低,为 20~250kb/s,功耗低、成本低、网络容量大,每个ZigBee设备最多可与 254 个设备相连接,组成一个具有 255个节点的ZigBee网络,覆盖 10~75m的范围,基本上可以覆盖一般的家庭或办公室环境,工作频段相对比较灵活,不仅可以使用全球通用的 2.4GHz 频段, 还可以使用欧洲的 868 MHz 频段和美国的 915 MHz 频段。

1.4 超宽带(UWB)技术

超宽带(UWB)技术是一种使用极窄脉冲方式完成无线发射和接收的特殊技术,它的独特之处在于彻底摒弃了普通无线收发中必须采用载波调制的传统技术手段,成为一种在时域中直接操作的无线技术,打破了传统无线通信技术高速度、低成本和低功耗不可兼得的两难问题。鉴于该技术的众多优点,使得它很好的应用在成像系统、车载雷达系统、通信与测量系统。依据美国联邦通信委员会(FCC)的规定, UWB通信系统可使用3.1~10.6GHz的频段,在 10 m范围内, 信号传输速率达到 500 Mb/s。

UWB技术的显著特点是传输速度快,保密性强,兼容性好,定位精准,体积小,功耗低,系统结构易于实现,适合短距离通信[9]。

2 应用领域

目前,RFID 技术得到了业界越来越广泛的关注,全球各大软硬件厂商相继投入大量的研究,主要应用领域包括 :物流领域的仓库管理、日用品销售 ;运输领域的集装箱管理和包装运输,公路收费和车辆监控;农林牧渔领域的跟踪定位 [10]; 医疗领域的药品生产、医疗垃圾跟踪等。

蓝牙具有功耗低及体积小的特性,因此它可以被集成到对数据传输速率要求不高的移动设备和便携设备中。主要应用领域包括 :家用无线联网、移动办公和会议联网、个人局域网、Internet 接入服务、移动电子商务等。

ZigBee 技术应用领域主要包括智能家居、工业与环境控制、医疗看护等行业中的低速率无线通信,具体包括 :家庭安全智能控制、工业控制、公共场所的烟雾探测、农业领域的信息采集及传输[11]、医疗部门的实时监测与治疗等。

UWB 技术最初被应用在军事方面,后来拓展到民用领域, 具有很好的商业价值。主要包括两方面技术,一方面是高速率数据传输的短距离无线通信技术 ;一方面是精确测距、定位、成像等的无线探测技术。具体的应用领域包括 :短距离高速无线多媒体智能网络、智能交通系统、传感网络和智能环境、工程探测和救援、军事领域等,超宽带具有很宽的带宽、低功耗,它可以与其他应用程序共存。因此,在无线通信领域, 超宽带技术是一项非常有前途的技术。

结 语

短距离无线通信技术的飞速发展,助推了物联网的普及速度,RFID、蓝牙、ZigBee、UWB 等技术分别具有不同的优缺点,可适用于不同的物联网应用场景,它们相互之间是一个完美的补充。短距离无线通信技术将朝着物联网的发展方向不断努力,发挥其在各个层面上的作用,为打造智慧城市、建立智慧地球服务。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭