当前位置:首页 > > Excelpoint世健
[导读]Excelpoint世健最新栏目围绕如何处理小信号前端这一话题,近期引起了一波讨论热潮。《世说芯语》专栏的特邀作者小狼在这里就小信号前端、确定测量范围、抑制噪声、提高信噪比等问题进行了介绍和分析。运算放大器结构探秘大学模拟电子课上,老师反复强调:理想运放的增益无穷大,分析运放,首...

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索




Excelpoint世健最新栏目

围绕如何处理小信号前端这一话题,近期引起了一波讨论热潮。《世说芯语》专栏的特邀作者小狼在这里就小信号前端、确定测量范围、抑制噪声、提高信噪比等问题进行了介绍和分析。


运算放大器结构探秘

大学模拟电子课上,老师反复强调:理想运放的增益无穷大,分析运放,首先注意虚断和虚短,我们都坚决贯彻老师的说教,然而忽略了其他一些比较重要的概念:比如共模抑制比、失调电压、偏置电流等。



一、运放输入模型

按照运放模型,比较全面的梳理出运放的基本模型:就是差模信号和共模信号的叠加。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

二、虚短概念

上学时,老师一直强调,理想运放要注意虚断和虚短。运放的同相端输入和反相端输入相等,这是怎么一回事呢?

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索理想运放开环增益无穷大,实际略小,大部分在100dB(100000)倍左右,按这个增益,要让输出变化3V,同相反相输入端只需30uV的压差即可,如果加上纹波、噪声等干扰信号,同相反相端基本上无变化。

于是又引入反馈,做闭环,同相反相端的电压差忽略不计。如同撑杠杆,小臂微微一动,大臂不住晃动。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索



三、差模输入和共模输入

在应用中,运放可以输入差模信号,也可以输入共模信号,共模信号大部分来自噪声,最核心的愿景是:共模被抵消,差模被放大。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索举个例子,有人在高铁车厢内做过一个实验,竖着摆放一排硬币,不管车速多快,硬币都立得很稳。这好比共模信号,外面环境怎样变化,信号不受影响。差模信号呢,就像人在车厢里来回走动,只要正常范围内,都不受到外界的干扰。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索



四、输入电压范围(Vin或Vcm)

运算放大器输入范围比较复杂,理论上来讲,同相端和反相端模拟输入在电源的正轨到负轨之间都能满足,运放的上下管大致对称,大部分时间,取运放的共模输入电压Vcm为1/2 Vdd。这样,运放主要工作在线性区

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

五、小信号检测方法

运算放大器用来做电流小信号采集时,往往会面临一个令人疑惑的问题,信号该如何采集?是采用高边电流检测还是采用低边电流检测?部分的意见采低边,部分人的意见是采高边,大家各抒己见,莫衷一是。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索舞台看戏,下层的演员多,而且间杂观众,很容易被遮挡,被观众淹没;楼上的明显好得多,容易被分辨,楼层越高,成本也更高,修楼费工时、造价不便宜!

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索


差分放大器介绍

一个不太形象的比喻,你在崎岖的山路上,提着满满的行李,追赶一辆高速运行的火车,你需要跑到车头找到你的座位,你会觉得非常吃力,大概率你还追不上;如果你已经上车了,站在车上,你会感觉很稳定,车尾车头来回走,也会很轻松。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

这跟共模干扰比较类似,由于传感器信号主要是通过施加电压差做为输出,信号的差值电压很小,而且,由于布局布线引起的EMI和共模干扰、温度漂移、等等。把传感器比喻做携带行李的旅客,把运放的同相端和反相端当做车厢,只要传感器信号给定在这中间,相对的干扰就会小很多。由于传感器的信号存在压差,避免运放异常饱和,引入差分放大器。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索基于成本考虑,行业之内,大部分设计还会采用普通运放,基于减法器的模型,搭建一个差动放大器

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索差分放大器的原理就像照镜子,物理学上的说法称作镜像,讲究对称和平衡,只有做到两边一模一样,效果才会最佳,否则,就会失真。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

为了做到镜像效果,需要在模拟前端做阻抗匹配,由于各点参考源不同,阻抗又有误差,完全阻抗匹配非常困难,下图是一个经典的差分运放,通过输出静默电压Uoz,用KCL去求解同相输入和反相输入阻抗,结果差异很大。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索有人会问,如何确定上面各电阻的值?正常来说,按照镜像原理,偏置电流一样,放大倍数相当,可以很容易求出4个电阻之间的关系,如何确定R1,会略微麻烦点,需要查运放的几个限制条件,阻值需满足:大于瞬时输出电压/最大输出电流、小于输入失调电压/输入偏置电流、还要注意热噪声影响,等等。


仪表放大器介绍

差分放大器能处理大部分模拟前端,但是,由于系统输入阻抗有限,需要加入复杂的匹配电路,然而,外围电阻精度和PCB线路阻抗,又会产生新的问题。

为了解决差分运放输入阻抗较低等问题,各大厂家又做了很多优化,有人采用如图的双运放方法来实现仪表放大。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索双运放有两个弱点:不支持单位增益、不同频率的共模抑制比较差。于是众多厂商引入另一种方案,采用三运放方法,不少大厂推出的仪表放大器,都是基于三运放原理来实现的。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

Microchip运放解决方案

仪表放大器 MCP6N16-100

针对工业客户应用,Microchip提出自己独特的解决方案,与众多厂商推出三运放仪表放大器方案不同,Microchip推出间接电流反馈型仪表放大器,间接电流反馈型仪表放大器内部结构如下图所示。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索间接电流反馈型仪表放大器是怎么工作的呢?前级做跨导放大,实现V-I转换,后级做跨阻放大I-V转换,用下面这张图来描述,也许会更准确一些。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索间接电流反馈型仪表放大器和三运放仪表放大器存在一些差别,主要优势:

在宽Vcm范围内具有高CMRR(轨到轨)

工作区域广(Vin和Vout)

适合低电压应用

无“Hex”图

高阻态Vref输入

更好的增益温度系数匹配 


应用案例——惠斯通桥

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

零漂移放大器 MCP6V61

另外,Microchip的零漂移放大器产品,主要针对较低成本应用,主要特点:

高直流精度

- VOS 漂移: ±15 nV/°C

- AOL: 125 dB

- PSRR: 117 dB

- CMRR: 120 dB

- (EMIRR) at 1.8 GHz: 101 dB

- 低功耗

- 静态电流80uA


应用案例——RTD传感器

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索Wolfe表示,Microchip还推出了多款有特色的运放产品,比如低噪声、高精度、全差分系列的MCP6D11、高边电流检测系列MCP6C04等。结合Excelpoint世健的技术支持等服务,可以帮助客户提供一站式选型平台,减少工作难度,尽快让产品上市。

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索

【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索



【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索立即扫码购买 ↑ ↑ ↑



关于世健亚太区领先的元器件授权代理商


世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。


世健是新加坡主板上市公司,拥有超过30年历史。世健中国区总部设于香港,目前在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。



【世说芯语】差分运放和仪表放大器应用科普贴——模拟小信号前端处理探索



点击“阅读原文”,联系我们↓↓↓

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭