当前位置:首页 > 嵌入式 > Linux阅码场
[导读]5.14-rc6了,看起来5.14也快发布了。而我5.13的总结还没有写出,我早觉得有写一点东西的必要了,这虽然于搬砖的码农毫不相干,但在追求上进的工程师那里,却大抵只能如此而已。为了不忘却的纪念,我们列出5.13内核的10个激动人心的新特性。上集先谈4个:AppleM1的初始M...

5.14-rc6了,看起来5.14也快发布了。而我5.13的总结还没有写出,我早觉得有写一点东西的必要了,这虽然于搬砖的码农毫不相干,但在追求上进的工程师那里,却大抵只能如此而已。为了不忘却的纪念,我们列出5.13内核10个激动人心的新特性。上集先谈4个:

  1. Apple M1的初始

  2. Misc cgroup

  3. Landlock安全模块

  4. 系统调用的堆栈随机化


Apple M1的初始支持


5.13最爆炸性的新闻无非是初始的Apple M1支持,但是然并卵,实用性几乎为0。因为,已经合入的patch非常类似于SoC bringup的初级阶段:

  • 带earlycon支持的UART (samsung-style) 串口驱动

  • Apple中断控制器,支持中断、中断亲和(affinity )和IPI (跨CPU中断)

  • SMP (通过标准spin-table来支持)

  • 基于simplefb的framebuffer驱动

  • Mac Mini的设备树

这样一个东西,是没法用的,发烧友玩玩可以,但是我们感激并欣赏Hector Martin “marcan”领导的Asahi Linux项目开了一个这样的好头。但是,在Apple M1上面跑Ubuntu啥的,近期、中期和长期的选择还是用Parallels虚拟化技术比较好。


Misc cgroup

众所周知,cgroup具备一个强大的控制CPU、内存、I/O等资源在不同的任务群间进行分配的能力。比如,你通过下面的命令,限制A这个群的CFS调度类进程,最多只能耗费20%CPU

这个世界上的绝大多数资源都是可以进行抽象的,比如属于cpuacctcpumemoryblkionet_cls什么的,但是,总有一些不同于常人的人,他们既不是男人,也不是女人,而是“妖如果有了仁慈的心”的人。Linux内核的驱动子系统多达100多个,但是还是有极个别驱动不属于这100多类中的任何一类,于是在drivers下面有个misc

现在内核碰到了类似的问题,它的资源要进行配额控制,但是不属于通用的类型,而是:

  • Secure Encrypted Virtualization (SEV) ASIDs

  • SEV - Encrypted State (SEV-ES) ASIDs

这些有限的 ASIDs用于在AMD平台上,进行虚拟机内存加密,不能归于现有cgroup的任何一类。那么,咱们加个misc类的cgroup吧,于是Misc control-group controller5.13内核诞生了。这再次证明了,不要重新造轮子,但是你可以在现有的轮子里面放一个“杂交”轮子。Misc cgroup允许进行一些特殊资源的控制,透过3个接口完成。

  • misc.capacity描述资源的能力(只读),比如:

$ cat misc.capacityres_a 50res_b 10
  • 透过misc.current描述当前资源的占用(只读),比如:

$ cat misc.currentres_a 3res_b 0
  • 透过misc.max设置这个cgroup最多只能使用多少资源(可读可写),比如:

# echo res_a 1 > misc.max同志们,有了这个misc cgroup的支持,以后咱们的阿猫阿狗资源限制,也可以往里面塞了。它相当于开了一道门。

 

Landlock安全模块

曾经有一个真诚的patch摆在我面前,但是我没有珍惜,发了V1被人怼了后就放弃了,等到失去的时候才后悔莫及,尘世间最痛苦的事莫过于此,如果上天可以给我一个机会再来一次的话,我会对那个patch说我要继续迭代发!如果非要在这个迭代的次数上加上一个期限,我希望是一百遍。5.13内核,最励志的事情无疑是,"Landlock" Lands In Linux 5.13 !在迭代了超过5年之后,安全组件landlock终于合入了Linux内核,这份始于2016年的爱情,终于有了一个美好的结局。为此,Linux内核doc的维护者,LDD3的作者之一Jonathan Corbet发文指出:Kernel development is not for people who lack persistence; changes can take a number of revisions and a lot of time to make it into a mainline release。文章链接:

https://lwn.net/Articles/859908/

所以,没有耐力、不能持之以恒,想一夜暴富的人,真地不适合做kernel开发。Landlock LSM主要给非特权进程提供安全沙盒的能力,比如你可以对一个普通进程,施加自定义的文件系统访问控制策略。

它的操作原理是,先创建一个规则集ruleset,比如,如下的ruleset就是涉及到文件的读、写、执、读DIR、写DIR等:

ruleset对用户以文件描述符fd的形式存在,再次证明了“一切都是文件”。接下来,我们可以透过这个fd,向这个ruleset里面添加rule,比如我们添加一个/usr目录的“读”规则,这样进程就不能写/usr了:

我们把这个ruleset施加起来让它生效:

想要体验的童鞋可以用这个例子启动你的进程,它设置好ruleset后,会去call exec启动命令行参数指定的程序:

https://github.com/landlock-lsm/linux/blob/landlock-v34/samples/landlock/sandboxer.c

LL_FS_RO环境变量是可读文件的列表,LL_FS_RW环境变量是可读写文件的列表,运行方法:


LL_FS_RO=”只读路径” \LL_FS_RW=”可写路径” \sandboxer  ./a.outa.out是你的想要安全沙盒的程序。

在下已经一睹为快,/home/baohua下面创建2个目录1,2,然后创建/home/baohua/1/1/home/baohua/2/12个文件,限制第一个目录只读:

童鞋们看明白了吗?我用sandboxer去启动cat,2个文件都是成功的。但是,去启动echo,/home/baohua/1/1是不允许写的,但是/home/baohua/2/1是可以写的。实际上,/home/baohua/1/1和/home/baohua/2/1并没有丝毫的不同。landlock在发挥作用了!


系统调用的堆栈随机化

这是一项安全增强,它允许对系统调用发生时,内核使用的堆栈添加一个随机偏移。这给基于stack的攻击增加了难度,因为stack攻击通常要求stack有个固定的layout。现在每次系统调用,stacklayout都变化的话,黑客就比较捉摸不定了。比如ARM64主要修改了invoke_syscall()这个函数:

这个东西听起来很高大上,但是它的原理可能简单地你想哭,show me the code:

它实际上就是每次系统调用把offset随机化一下,然后通过__builtin_alloca()stack里面分配一些stack空间,于是导致stack的位置移动。我们可以写个非常简单的应用程序来验证原理:

然后编译

gcc 1.c -fno-stack-protector -O0运行:

亲爱的,你有没有发现,10次函数调用的时候,每次stack临时变量的位置都不一样!!?


本文未完待续,您的赞赏将鼓励我的原创

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭