当前位置:首页 > 嵌入式 > 嵌入式客栈
[导读]之前的几篇文章(从i.MX6ULL嵌入式Linux开发1-uboot移植初探起),介绍了嵌入式了Linux的系统移植(uboot、内核与根文件系统)以及使用MfgTool工具将系统烧写到板子的EMMC中。本篇开始介绍嵌入式Linux驱动开发。内容较多,先看目录:1Linux驱动分...

之前的几篇文章(从i.MX6ULL嵌入式Linux开发1-uboot移植初探起),介绍了嵌入式了Linux的系统移植(uboot、内核与根文件系统)以及使用MfgTool工具将系统烧写到板子的EMMC中。

本篇开始介绍嵌入式Linux驱动开发。

内容较多,先看目录:

1 Linux驱动分类

Linux中的外设驱动可以分为三大类:字符设备驱动、块设备驱动和网络设备驱动。

  • 字符设备驱动:字符设备是能够按照字节流(比如文件)进行读写操作的设备。字符设备最常见,从最简单的点灯到I2C、SPI、音频等都属于字符设备驱动
  • 块设备驱动:以存储块为基础的设备驱动,如EMMC、NAND、SD卡等。对用户而言,字符设备与块设备的访问方式没有差别。
  • 网络设备驱动:即网络驱动,它同时具有字符设备和块设备的特点,因为它是输入输出是有结构块的(报文,包,帧),但它的块的大小又不是固定的。

2 Linux驱动基本原理

Linux中一切皆文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx”的文件进行相应的操作即可实现对硬件的操作。

比如最简单的点灯功能,会有/dev/led这样的驱动文件,应用程序使用open函数来打开文件/dev/led,如果要点亮或关闭led,那么就使用write函数写入开关值,如果要获取led的状态,就用read函数从驱动中读取相应的状态,使用完成以后使用close函数关闭/dev/led这个文件。

2.1 Linux软件分层结构

Linux软件从上到下可以分层4层结构,以控制LED为例:

  • 应用层:应用程序使用库提供的open函数打开LED设备

  • :库根据open函数传入的参数执行“swi”指令,进而引起CPU异常,进入内核

  • 内核:内核的异常处理函数根据传入的参数找到对应的驱动程序,返回文件句柄给库,进而返回给应用层

  • 应用层得到文件句柄后,使用库提供的write或ioctl发出控制指令

  • 库根据write或ioctl函数传入的参数执行“swi”指令,进入内核

  • 内核的异常处理函数根据传入的参数找到对应的驱动程序

  • 驱动:驱动程序控制硬件,点亮LED

应用程序运行在用户空间,而Linux驱动属于内核的一部分,因此驱动运行于内核空间。当应用层通过open函数打开/dev/led 这个驱动时,因用户空间不能直接操作内核,因此会使用“系统调用”的方法来从用户空间“陷入”到内核空间,实现对底层驱动的操作。

比如应用程序调用了open这个函数,则在驱动程序中也应有一个对应的open的函数。

2.2 Linux内核驱动操作函数

每一个系统调用,在驱动中都有与之对应的一个驱动函数,在Linux内核文件include/linux/fs.h中有个file_operations结构体,就是Linux内核驱动操作函数集合:

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*mremap)(struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
/*省略若干行...*/
};
其中有关字符设备驱动开发中常用的函数有:

  • owner:拥有该结构体的模块的指针,一般设置为THIS_MODULE。
  • llseek函数:用于修改文件当前的读写位置。
  • read函数:用于读取设备文件。
  • write函数:用于向设备文件写入(发送)数据。
  • poll函数:是个轮询函数,用于查询设备是否可以进行非阻塞的读写。
  • unlocked_ioctl函数:提供对于设备的控制功能, 与应用程序中的 ioctl 函数对应。
  • compat_ioctl函数:与 unlocked_ioctl功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。
  • mmap函数:用于将将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数, 比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。
  • open函数:用于打开设备文件。
  • release函数:用于释放(关闭)设备文件,与应用程序中的 close 函数对应。
  • fasync函数:用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中。
  • aio_fsync函数:与fasync功能类似,只是 aio_fsync 是异步刷新待处理的

2.3 Linux驱动运行方式

Linux 驱动有两种运行方式:

  • 将驱动编译进Linux内核中, 这样当Linux内核启动的时候就会自动运行驱动程序。
  • 将驱动编译成模块(扩展名为 .ko), 在Linux内核启动以后使用“insmod”命令加载驱动模块。
在驱动开发阶段一般都将其编译为模块,不需要编译整个Linux代码,方便调试驱动程序。当驱动开发完成后,根据实际需要,可以选择是否将驱动编译进Linux内核中。

2.4 Linux设备号

2.4.1 设备号的组成

Linux中每个设备都有一个设备号,设备号由主设备号和次设备号两部分组成。

  • 主设备号:表示某一个具体的驱动
  • 次设备号:表示使用这个驱动的各个设备
Linux 提供了名为dev_t的数据类型表示设备号,其本质是32位的unsigned int数据类型,其中高12位为主设备号,低2 位为次设备号,因此Linux中主设备号范围为0~4095

在文件include/linux/kdev_t.h中提供了几个关于设备号操作的宏定义:

#define MINORBITS 20
#define MINORMASK ((1U << MINORBITS) - 1)

#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev)
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭