当前位置:首页 > 嵌入式 > 嵌入式大杂烩
[导读]关注「嵌入式大杂烩」,选择「星标公众号」一起进步!大家好,我是ZhengN。本次给大家分享一个C/C的小知识——#pragmaonce。我之前也没用过#pragmaonce,直到看到同事的代码有用到,所以去了解了一下。分享一篇博文:❝https://blog.csdn.net/f...

关注「嵌入式大杂烩」,选择「星标公众号」一起进步!

大家好,我是ZhengN。本次给大家分享一个C/C 的小知识——#pragma once

我之前也没用过#pragma once,直到看到同事的代码有用到,所以去了解了一下。分享一篇博文:

https://blog.csdn.net/fanyun_01/article/details/77413992

1、#pragma once有什么作用?

为了避免同一个头文件被包含(include)多次,C/C 中有两种宏实现方式:一种是#ifndef方式另一种是#pragma once方式

在能够支持这两种方式的编译器上,二者并没有太大的区别。但两者仍然有一些细微的区别。

2、两者的使用方式有何区别?

示例代码如下:

//方式一:
#ifndef  __SOMEFILE_H__
#define   __SOMEFILE_H__
 ... ... // 声明、定义语句
#endif

//方式二:
#pragmaonce
 ... ... // 声明、定义语句

3、两者各有何特点?

(1)#ifndef

#ifndef的方式受C/C 语言标准支持。它不仅可以保证同一个文件不会被包含多次,也能保证内容完全相同的两个文件(或者代码片段)不会被不小心同时包含。

当然,缺点就是如果不同头文件中的宏名不小心“撞车”,可能就会导致你看到头文件明明存在,但编译器却硬说找不到声明的状况——这种情况有时非常让人郁闷。

由于编译器每次都需要打开头文件才能判定是否有重复定义,因此在编译大型项目时,ifndef会使得编译时间相对较长,因此一些编译器逐渐开始支持#pragma once的方式。

(2)#pragma once

#pragma once 一般由编译器提供保证:同一个文件不会被包含多次。注意这里所说的“同一个文件”是指物理上的一个文件,而不是指内容相同的两个文件。

你无法对一个头文件中的一段代码作pragma once声明,而只能针对文件。

其好处是,你不必再担心宏名冲突了,当然也就不会出现宏名冲突引发的奇怪问题。大型项目的编译速度也因此提高了一些。

对应的缺点就是如果某个头文件有多份拷贝,本方法不能保证他们不被重复包含。当然,相比宏名冲突引发的“找不到声明”的问题,这种重复包含很容易被发现并修正。

另外,这种方式不支持跨平台!

4、两者之间有什么联系?

#pragma once 方式产生于#ifndef之后,因此很多人可能甚至没有听说过。目前看来#ifndef更受到推崇。因为#ifndef受C/C 语言标准的支持,不受编译器的任何限制;

#pragma once方式却不受一些较老版本的编译器支持,一些支持了的编译器又打算去掉它,所以它的兼容性可能不够好。

一般而言,当程序员听到这样的话,都会选择#ifndef方式,为了努力使得自己的代码“存活”时间更久,通常宁愿降低一些编译性能,这是程序员的个性,当然这是题外话啦。

还看到一种用法是把两者放在一起的:

#pragma once
#ifndef __SOMEFILE_H__
#define __SOMEFILE_H__

... ... // 声明、定义语句

#endif
总结:

看起来似乎是想兼有两者的优点。不过只要使用了#ifndef就会有宏名冲突的危险,也无法避免不支持#pragma once的编译器报错,所以混用两种方法似乎不能带来更多的好处,倒是会让一些不熟悉的人感到困惑。

选择哪种方式,应该在了解两种方式的情况下,视具体情况而定。只要有一个合理的约定来避开缺点,我认为哪种方式都是可以接受的。而这个已经不是标准或者编译器的责任了,应当由程序员自己或者小范围内的开发规范来搞定。

为了避免同一个文件被include多次:

1、#ifndef方式 

2、#pragma once方式

在能够支持这两种方式的编译器上,二者并没有太大的区别,但是两者仍然还是有一些细微的区别。

方式一:

#ifndef __SOMEFILE_H__
#define __SOMEFILE_H__
... ... // 一些声明语句
#endif

方式二:

#pragma once
... ... // 一些声明语句
#ifndef的方式依赖于宏名字不能冲突,这不光可以保证同一个文件不会被包含多次,也能保证内容完全相同的两个文件不会被不小心同时包含。当然,缺点就是如果不同头文件的宏名不小心“撞车”,可能就会导致头文件明明存在,编译器却硬说找不到声明的状况。

#pragma once则由编译器提供保证:同一个文件不会被包含多次。注意这里所说的“同一个文件”是指物理上的一个文件,而不是指内容相同的两个文件。带来的好处是,你不必再费劲想个宏名了,当然也就不会出现宏名碰撞引发的奇怪问题。

对应的缺点就是如果某个头文件有多份拷贝,本方法不能保证他们不被重复包含。当然,相比宏名碰撞引发的“找不到声明”的问题,重复包含更容易被发现并修正。

方式一由语言支持所以移植性好,方式二 可以避免名字冲突。

本文来源网络版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

往期干货:

往期推荐



嵌入式项目生成器,了解一下!

一个清晰的LCD驱动编写思路(附代码分析)

RT-Thread和Freertos的区别?

程序如何运行?编译、链接、装入?


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭