当前位置:首页 > > 工程师看海
[导读]▲本文要分析的电路很多内置有锂电池的便携电子设备,比如手机,通常采用这样的供电方式:1、没有插入USB电源时,使用内置的锂电池供电。2、当插入USB电源时,切换为由外置的USB电源供电,并对锂电池进行充电。下图电路就是实现上述的功能,它来自一款电子书阅读器(Kindle同类产品)...


▲ 本文要分析的电路


很多内置有锂电池的便携电子设备,比如手机,通常采用这样的供电方式:
  • 1、没有插入USB电源时,使用内置的锂电池供电


  • 2、当插入USB电源时,切换为由外置的USB电源供电,并对锂电池进行充电。


下图电路就是实现上述的功能,它来自一款电子书阅读器(Kindle同类产品):


这是已量产的电路,成熟稳定,实物电路板如下图所示,几个关键的元器件做了标注:


文要讲解的是“外置USB供电与内置锂电池供电的自动切换电路”,所以先把上述电路中不相关的电路隐藏。也就是隐藏锂电池充电管理、电源滤波等电路:


隐藏后变成这样:


这一下子,电路变得好简单,实现电源切换的功能,竟然只需要一个二极管、一个MOS管、一个电阻!一、电路说明将上述的“外置USB供电与内置锂电池供电自动切换电路”整理一下,弄好看点:


功能逻辑是这样的:
  • 1、当插着USB电源时,由外置的USB电源供电,即VBUS对VOUT供电。



  • 2、当拔掉USB电源时,切换为由内置的锂电池供电,即VBAT对VOUT供电。



  • 3、当重新插入USB电源时,切换为由外置的USB电源供电,即VBUS对VOUT供电。


二、原理分析假设VBUS的电压为5V,VBAT的电压为3.7V,下面开始分析。1、当插着USB电源时:VBUS通过肖特基二极管D9到达VOUT。


肖特基二极管的导通压降约为0.3V,USB电压VBUS = 5V,所以:VOUT = 5V - 0.3V = 4.7V由于VBAT为3.7V,MOS管Q4的s极为4.7V,g极为5V,由此可知:Vgs = 5V - 4.7V = 0.3V > 0所以MOS管处于不导通状态,同时其体二极管也是反向截止。由于电阻R155的存在,会浪费一些功耗,流过R155的电流为:5V / 10Kohm = 0.5mA



2、当拔掉USB电源时:VBUS的电压会从5V开始往下降,电阻R155起到给VBUS放电的作用。VBUS的电压需要快速下降,因为如果下降慢了,会导致MOS管Q4打开变慢,也就不能很快地切换为电池VBAT供电。如下图,假设VBUS缓慢下降到4.9V,即MOS管Q4的g极为4.9V。电池电压VBAT通过MOS管Q4的体二极管后降低了约0.7V,变为3V,即MOS管的Vgs电压为:4.9V - 3V = 1.9V > 0MOS管仍然不导通,VOUT的供电没有完全切换为VBAT。


假设VBUS已经下降为1V,如下图。则Vgs = 1V - 3V = -2V,MOS管已经逐渐打开。


最终,VBUS会降到0V,MOS管也会完全打开,VOUT切换为用VBAT供电,VOUT电压变为3.7V:


VBUS接的滤波电容会令其电压下降缓慢,如果发现VBUS的电压下降过慢,可以减小R155的阻值。但是这样会导致在插入USB电源时,流过R155的电流变大,增加了无谓的功耗。所以R155的阻值不能过大也不能过小,需根据实际调试的效果来决定。3、当重新插入USB电源时:如下图,MOS管Q4的Vgs = 5V - 4.7V > 0,MOS管不导通,并且其体二极管也是反向偏置。VOUT切换为用VBUS供电,Vout电压变为4.7V。



三、性能提升在拔掉USB电源的瞬间,有没有可能MOS管Q4来不及打开,导致VBAT的电压没有及时切过来?是有可能的。MOS管Q4没有快速打开,VBAT供电不能及时续上来,会导致VOUT电压下降过多,VOUT的负载电路就可能工作异常。如果电路的负载较重,拉取的电流较大,尤其容易出现在供电电源切换时VOUT电压下降过多的问题。怎么办呢?
  • 1、可以加快MOS管打开导通的速度。方法是减小VBUS的滤波电容的容值,减小电阻R155的阻值,这都是让VBUS快速掉电,从而让Vgs快点到达令MOS管完全打开的电压。



  • 2、在VOUT增加滤波电容,但是效果不怎么明显。



  • 3、这是重点!可以给MOS管并联一个肖特基二极管D1,如下图所示:


该肖特基二极管D1的正向导通压降约为0.3V,比MOS管的体二极管要小。在MOS管完全打开之前,VBAT通过肖特基二极管D1对VOUT进行供电,可以缓解VOUT电压下降过多的问题。这个方法非常实用,该电路与方法已经被申请了实用新型专利。其实很多再普通不过的电路都被申请了实用新型专利,尽管这些电路被大众长期使用在先,具体就不展开了。四、应用案例除了上述的电子书阅读器有应用之外,还有大量的产品使用了这个切换电路。比如MicroPython领域著名的01Studio公司,其出品的多款开发板都有这个切换电路以其中的一款型号为“pyWiFi-ESP32”的开发板举例,其电源部分的电路图如下:


其中,电源切换相关的电路在这里:


标注对应的实物图:



五、最后本文应该是全网目前为止,讲这个电路讲得最“啰嗦”的一篇,不知会不会讲得太“干”了,不好消化。欢迎点击左下角的“阅读原文”给我留言。关于电路的学习,希望大家,enjoy!---The end---



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭