当前位置:首页 > 嵌入式 > 嵌入式微处理器
[导读]大家好,当我说到MOS管的时候呢,你的脑子里可能是一团糨糊的。大部分的教材都会告诉你长长的一段话:MOS管全称金属氧化半导体场效应晶体管,英文名Metal-Oxide-SemiconductorField-EffectTransistor,属于绝缘栅极场效晶体管,以硅片为秤体,利...

大家好,当我说到MOS管的时候呢,你的脑子里可能是一团糨糊的。


大部分的教材都会告诉你长长的一段话:

MOS管全称金属氧化半导体场效应晶体管,英文名Metal-Oxide-Semiconductor Field-Effect Transistor,属于绝缘栅极场效晶体管,以硅片为秤体,利用扩散工艺制作.......有N沟道和P沟道两个型。不仅如此,它还有两个兄弟,分别是结型场效应管以及晶体场效应管.......


面对这么大一段话,我不知道你有没有搞明白,反正我大学里是完全没有搞明白,学了一个学期就学了个寂寞。


那为什么这些教材要这么的反人类,他们难道就不能好好写说人话吗?


我大概分析了一下,因为同一本教材他需要面对不同专业的学生,所以教材最重要的是严谨。和全面相比是不是通俗易懂就没有那么重要了。而且一般的教材也不会告诉你学了有什么用,这就导致了在学习中你很容易迷失在这些概念中,抓不到重点。



本文呢,我想根据自己的工作学习经历,抛开书本上这些教条的框架,从应用侧出发来给大家介绍一下MOS管里面最常见也是最容易使用的一种:增强型NMOS管,简称NMOS。当你熟悉了这个NMOS的使用之后呢,再回过头去看这个教材上的内容,我相信就会有不同的体会了。


NMOS的用法
首先来看这么一张简单的图(图1),我们可以用手去控制这个开关的开合,以此来控制这个灯光的亮灭。


图1


那如果我们想要用Arduino或者单片机去控制这个灯泡的话呢,就需要使用MOS管来替换掉这个开关了。为了更加符合我们工程的实际使用习惯呢,我们需要把这张图稍微转换一下,就像如图2这样子。


图2


那这两张图是完全等价的,我们可以看到MOS管是有三个端口,也就是有三个引脚,分别是gate,drain和source。至于为啥这么叫并不重要,只要记住他们分别简称g、d、s就可以。


图3


我们把单片机的一个IO口接到这个MOS管的gate端口,就可以控制这个灯泡的亮灭了。当然别忘了供电。当这个单片机的IO口输出为高的时候,NMOS就等效为这个被闭合的开关,指示灯光就会被打开;那输出为低的时候呢,这个NMOS就等效为这个开关被松开了,那此时这个灯光就被关闭,是不很简单。


那如果我们不停的切换这个开关,那灯光就会闪烁。如果切换的这个速度再快一点,因为人眼的视觉暂留效应,灯光就不闪烁了。此时我们还能通过调节这个开关的时间来调光,这就是所谓的PWM波调光,以上就是MOS管最经典的用法,它实现了单片机的IO口控制一个功率器件。当然你完全可以把灯泡替换成其他的器件。器件比如说像水泵、电机、电磁铁这样的东西。


图4 PWM波调光


如何选择NMOS
明白了NMOS的用法之后呢,我们来看一下要如何选择一个合适的NMOS,也就是NMOS是如何选型的。


那对于一个初学者来说,有四个比较重要的参数需要来关注一下。第一个是封装,第二个是vgsth,第三个是Rdson上,第四个是Cgs。


封装比较简单,它指的就是一个MOS管这个外形和尺寸的种类也有很多。一般来说封装越大,它能承受的电流也就越大。为了搞明白另外三个参数呢,我们先要来介绍一下NMOS的等效模型。


图5 NMOS等效模型


MOS其实可以看成是一个由电压控制的电阻。这个电压指的是g、s两端的电压差,电阻指的是d、s之间的电阻。这个电阻的大小呢,它会随着g、s电压的变化而产生变化。当然它们不是线性对应的关系,实际的关系差不多像这样的,横坐标是g、s电压差。


图6 Rds与Vgs关系图


纵坐标是电阻的值,当g、s的电压小于一个特定值的时候呢,电阻基本上是无穷大的。然后这个电压值大于这个特定值的时候,电阻就接近于零,至于说等于这个值的时候会怎么样,我们先不用管这个临界的电压值,我们称之为vgsth,也就是打开MOS管需要的g、s电压,这是每一个MOS管的固有属性,我们可以在MOS管的数据手册里面找到它。


图7 MOS管数据手册


显然vgsth一定要小于这个高电平的电压值,否则的话就没有办法被正常的打开。所以在你选择这个MOS管的时候,如果你的高电平是对应的5V,那么选3V左右的vgsth是比较合适的。太小的话会因为干扰而误触发,太大的话又打不开这个MOS管


接下来我们再来看看NMOS的第二个重要参数Rdson,刚才有提到NMOS被完全打开的时候,它的电阻接近于零。但是无论多小,它总归是有一个电阻值的,这就是所谓的Rdson。它指的是NMOS被完全打开之后,d、s之间的电阻值。同样的你也可以在数据手册上找到它。这个电阻值当然是越小越好。越小的话呢,它分压分的少,而且发热也相对比较低。但实际情况一般Rdson越小,这个NMOS的价格就越高,而且一般对应的体积也会比较大。所以还是要量力而行,选择恰好合适。


最后说一下Cgs,这个是比较容易被忽视的一个参数,它指的是g跟s之间的寄生电容。所有的NMOS都有,这是一个制造工艺的问题,没有办法被避免。


那它会影响到NMOS打开速度,因为加载到gate端的电压,首先要给这个电容先充电,这就导致了g、s的电压并不能一下子到达给定的一个数值。


图8


它有一个爬升的过程。当然因为Cgs比较小,所以一般情况下我们感觉不到它的存在。但是当我们把这个时间刻度放大的时候,我们就可以发现这个上升的过程了。对于这个高速的PWM波控制场景是致命的。当PWM波的周期接近于这个爬升时间时,这个波形就会失真。一般来说Cgs大小和Rdson是成反比的关系。Rdson越小,Cgs就越大。所以大家要注意平衡他们之间的关系。


以上就是关于NMOS大家需要初步掌握的知识了。

END
作者:Tamia

原文地址:

https://www.xiaopingtou.net/article-104327.html

版权归原作者所有,如有侵权,请联系删除。
嵌入式ARM

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭