当前位置:首页 > 技术学院 > 技术前线
[导读]运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。由于早期应用于模拟计算机中用以实现数学运算,因而得名“运算放大器”。

首先我们来讲讲在模电中,各种放大倍数符号的对比:

A: 增益或放大倍数的通用符号

Ac: 共模电压放大倍数

Ad: 差模电压放大倍数

Ai: 电流放大倍数

Au: 电压放大倍数

Auf: 有反馈时的电压放大倍数

Aus: 考虑信号源内阻时的电压放大倍数

然后,放大倍数指的是什么呢?

放大作用是针对变化量而言的,对于放大电路而言,其放大倍数指的是输出信号与输入信号的变化量之比。对于电压放大倍数或者电流放大倍数,其输入与输出的变化量也不一样。

放大电路种类

当我们在讨论放大器之前,我们首先要知道放大器的虚短(短路)和虚断(断路)是怎么回事?

由于运放的电压放大倍数很大,一般的通用型运算放大器的开环电压放大倍数都在 80 dB 以上(即1万倍以上)。而运放的输出电压是有限的,一般在 10 V~14 V。因此可以推算出运放的差模输入电压不足 1 mV,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。虚短得出正负输入端等电位的结论。

虚短的存在是有条件的,这个条件是“运放要处于放大状态且开环增益很大”,(因为要确保运放的开环增益很大,运放处于不同的工作状态会影响开环增益,比如进入饱和区的开环增益A与放大区的开环增益A是不同的!因此才要运放处于放大状态)要满足这个条件只有两种状态:

在开环电路中,输入两端的电压差非常小,不会让运放饱和;

在闭环的深度反馈电路中。

“虚断”相对于“虚短”理解起来就容易多了,即电流流向运放输入端几乎为零,在上图中体现在 I1 等于 I2 ,这是由于运放输入差模电阻很大,理想运放可近似看为无穷大,如果输入差模电阻是无穷大也就是开路了,所以并没有电流流入,实际运放虽说不是无穷大,但是这个值很大,一般都在 1MΩ 以上,因此流向运放输入端电流很小(可以反推,如果电流为 1mA,就会产生很高的输入差模电压,显然运放不能正常工作了),因此可以近似看为断路,并不是真正的断路,也就是“虚断”。虚断的存在是无条件的,因为这是由它的内部结构决定的,输入电阻大,电流进不去。虚断得出电流不流入流出放大器输入端,而外端电流相等的结论。

电压跟随器

当我们在日常的工作中,经常能够看到这样的原理图出在电路图中,我们如何知道它的输出电压和放大倍数呢?

首先,我们来说这个结构是电压跟随器,实现的是输出电压跟随输入电压的变化的一类电子元件。也就是说,电压跟随器的电压放大倍数恒小于且接近1。由上面讲到的虚短性质,很容易得到Ui=Up=Un=Uo。

电压追随器的作用:

缓冲:在一定程度上可以避免由于输出阻抗较高,而下一级输入阻抗较小时产生的信号损耗,起到承上启下的作用。

隔离:由于电压跟随器具有输入阻抗高,输出阻抗低的特点,使得它对上一级电路呈现高阻状态,而对下一级电路呈现低阻状态,常用于中间级,以隔离前后级电路,消除它们之间的相互影响。

电压放大器

负反馈电压放大器

运放的同向端接地为 0V ,反向端和同向端虚短,所以也是 0V,反向输入端输入电阻很高,虚断,几 乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过 R1的电流

流过R2的电流

又因为其

所以可以得到其输出电压为

所以其放大倍数 Au 就可以得到

正反馈电压放大器

Vi 与 V- 虚短,则 Vi = V-

因为虚短,反向输入端没有电流输入输出,通过 R1 和 R2 的电流相等,假设此电流为 I,则可以得到该电流表达式:

Vi 等于 R2 上的分压,即所谓的

由上式可知:

所以其放大倍数 Au 就可以得到

加法器

加法器是指输出信号是几个输入信号之和的放大器。根据其实现的功能,可以将其分为同相加法器和反相加法器。

同相加法器

由于虚断,同相运放输入端没有电流流过,所以流过 R1 和 R2 的电流一样大。同理可知,流过 R3 和R4 的电流也相等。

所以:

又因为虚短,则 V+ = V-

所以可以得到其 Vout 与 V+

反相加法器

由于虚短,V+ = V- = 0 ,i1 + i2 =i3

根据虚断以及KCL可知,通过 R1 和 R2 的电流之和等于通过 R3 的电流。

反相输入求和电路的实质是利用 “虚地 ” 与 “ 虚断” 的特点,通过各路输入电流相加的放法来实现输入电压的相加。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭