当前位置:首页 > 技术学院 > 技术前线
[导读]ANSYS WORKBENCH的总体介绍

如何学习ANSYS WORKBENCH?

我想,首先需要对于ANSYS WORKBENCH有一个总体了解。知道一个软件可以做什么事情,然后弄清楚我们自己到底想要做什么,然后再去寻找学习的道路,这就是所谓知己知彼。

那么 ANSYS WORKBENCH可以做什么呢?

有些人说,它是一个有限元软件平台。这总体上正确,但并不完全正确。实际上,ANSYS WORKBENCH包含了一系列软件,虽然绝大部分软件使用有限元方法进行编制的,但是也有部分软件使用了有限体积法,也有软件使用了无网格方法。所以,一概的说明它是有限元软件是不大正确的。

让我们说得更高一点吧。

万事万物,其间自有规律存在,所有的学科都致力于寻求该学科研究范围内部的各种规律。那么什么是规律?无非是事物内部的各种关系而已。这些关系,在数学上,就表现为数量之间的关系。而数量之间的关系,可能是平级的,那么就是代数方程。如果是有原因和结果关系的,那么就表现为微分方程或者积分方程。在同一个事物内部存在的关系未必只有一种,可能有多种,那么就会有多个方程出现,这就构成了方程组。比如说,对于固体力学而言,就有3个静力平衡方程,6个几何方程,6个物理方程。这些方程有代数方程,也有微分方程。这就构成了一个微分-代数方程组。不仅是固体力学,流体力学也是如此,传热学是如此,而电磁场也是如此。

这样,我们面对的是代数-微分方程组的求解问题。

如何求解这些方程组?在数学上,这很困难,尤其是当边界并不那么规则时。

解析法只能求解非常特定的问题,但是实际问题总是奇奇怪怪的,所以我们需要寻找另外的方法。于是有所谓的半解析法,无非是用幂函数或者三角函数的组合来确定问题的解析解,这种方法对于实际问题也很难凑效。于是出现了数值解法。

数值解法多种多样,如有限元法,有限体积法,边界元法,有限差分法,无网格方法等。一般而言,对于结构的计算,用有限元法比较合适;对于流体仿真,用有限体积法;而对于无限域声场的分析,主要用边界元法;有限差分法出现得很早,但是很少看到软件去使用它。至于无网格方法,因为不需要网格,主要用在那些用网格无法表达的场合,例如爆炸,碎片魂飞魄散,一旦分开后就杳无音信,此时网格方法无能为力,只好求助于无网格方法。

各种各样的分析软件,都是用到上面的数值方法中的一种或者多种,然后用FORTRAN,C,C++编制了程序,这些程序的主体就是数值解法;而为了用户使用方便,也会整出一堆花花绿绿,让人爽心悦目的窗口界面,以吸引用户的眼球,为用户的数据输入和输出提供方便。

ANSYS就是这样一种数值分析软件,它面对的是固体的力学分析,流体的力学分析,温度场的分析,以及电磁场的分析。它主要使用了有限元法,同时也部分使用了有限体积法和无网格方法。针对不同的分析,给出了诸多分析系统。下面以ANSYS14简要说明之。

ANSYS14的功能主要体现在WORKBENCH的工具箱中。下面是它的工具箱。


image

这四个项目,第一项是分析系统,最常用;第二项是组件系统,就是构成分析系统的各个组成元素,我们可以搭积木一样,任意拼接,从而组成自己所需要的分析系统;第三项实际上是耦合分析,这就是ANSYS鼓吹的自己多物理场耦合的特色。这里面给出了几种常见的多物理场耦合的方式。第四项则是设计探索,其实就是优化设计和可靠性设计那一套。此时需要对某一种分析反复迭代,从而得到最优解。

先看第一项,分析系统。展开它。


image

这里面的分析系统,看上去很多,令人眼花缭乱。实际上就是四类:固体分析;流体分析;热分析;电磁场分析。

对于固体分析,有静力学分析和动力学分析。

静力学分析中,有两支。第一支就是纯粹的静力学分析,static structural,以及static structural(samcef),分别用不同的求解器计算静力学问题。这实际上是我们绝大多数CAE工程师工作的地方。很多人一辈子只做静力学分析,而对于别的分析不管不顾,这主要是工作的需要。经常有人问我,在静力学分析方面,相比PATRAN,ABAQUS而言,ANSYS有什么优点?由于静力学分析包含线性分析和非线性分析,而非线性分析又包含材料非线性,边界非线性,几何非线性三支。实际上,对于线性问题而言,三者都差不多。对于非线性分析而言,ABAQUS是不错的选择。除了静力学分析,然后就是linear buckling所谓的线性屈曲问题,其实就是我们在材料力学中的压杆稳定。确定临界载荷,并画出屈曲模态。这都属于静力学范畴。

动力学分析则范围广阔。包含modal模态分析,modal(samcef)模态分析,harmonic response谐响应分析,random vibriation随机振动分析,response spectrum响应谱分析。这些分析之中,模态分析至关重要。因为所谓的谐响应分析,随机振动分析,响应谱分析都以之为基础。

还有瞬态动力学分析,就是当激励很快的改变时,要求结构的响应问题。这种问题出现得如此频繁,对它的研究就相当重要。有所谓的隐式解法和显式解法来对付它。隐式解法就说,求解当前的时间步还需要用到后面时间步的信息;而显式解法是,只根据前面的时间步就可以得到当前的解答了。在ANSYS中,transient structural用的是隐式解法,而explicit dynamics用的是显式解法。一般而言,显式解法面对的都是时间很短暂的问题,例如冲击,碰撞,波的传播等。隐式解法所面对的时间则要较长一些。

除此以外,ANSYS还提供了对于多刚体动力学的支持。这在最初的版本里面是没有的,而且有些出乎我们一般人的意料。ANSYS在很多人眼中,是面对变形体的;而对于多刚体动力学,ADAMS,DADS,SIMPACK就做得很出色。但是ANSYS也加入了一个多刚体动力学模块,就是rigid dynamics。其功能相比ADAMS而言,还是有差距。毕竟别人是专门做多刚体动力学仿真的软件。不过,ANSYS 加入这一模块的目的,应该主要是为了做刚柔耦合仿真,只在ANSYS内部做,而不要联合一堆软件。所以,虽然rigid dynamics比ADAMS而言,还是有不少差距,但是对于在一个软件内部做刚柔耦合仿真,ANSYS这种举措还是有吸引力的。笔者十年前做刚柔耦合仿真,需要在ANSYS中生成模态中性文件,然后导入到ADAMS中,一旦到ADAMS中后,对于连接点,施加载荷的方式有诸多限制,让人深感不爽。而现在,只是借助于ANSYS做刚柔耦合仿真,则要舒服很多。

下面看流体分析。

主要有四个分析系统。一个是fluid flow(CFX),一个是fluid flow(fluent),一个是fluid flow(polyflow),一个是fluid flow-blowmodling(polyflow).其中,前两个软件本是世界上数一数二的计算流体动力学分析软件,CFX,FLUENT,二者在流体分析领域赫赫有名,被ANSYS所收购。而后二者主要针对材料成型的仿真,例如吹塑,注塑成型等。主要用于粘弹性材料的流动仿真。我们学习机械的都知道,塑料成型的仿真是一大主题,而POLYFLOW则可以很好的为这一主题服务。

接着是热分析。很有限的支持。steady-state thermal稳态热分析和transient thermal瞬态热分析两个分析系统。热分析在我们外人看来很简单,无非就是考虑热传导,对流,辐射情况下物体上面的温度分布而已。就热分析而言,FloTHERM应该是首选。ANSYS提供了我们所需要的最简单的热分析功能。

然后是电磁场分析。electric是静电场分析,magnetostatic是静磁场分析。功能也很简单。更高级的电磁场分析在ANSOFT中了。

接着看组件系统。


image

这里面包含了诸多单元模块,是构成前面分析系统的基础。可以组装,也可以单独使用。限于篇幅,不再赘述。

用户系统,则包含的是常见的耦合场分析。如下图。


image

例如前两个是流固体耦合分析,分别是从CFX,FLUENT到静力学分析的耦合;然后是预应力模态的分析,就是先做静力学分析,得到应力后,再做模态分析;接着是随机振动分析,就是先做模态分析,再做随机振动分析;接着是响应谱分析,同样是先做模态分析,再做响应谱分析;最后是热应力问题,是先做热分析,得到温度后,把温度导入到结构场,再做应力分析。

最后是设计探索模块。如下图。


image

第一个是全局优化,就是优化设计的内容。无非就是确定优化模型,然后选择一个初始设计点,做一次仿真,然后依据某种规则,找到另外一个设计点,再做一次仿真。如此反复不已,直到最后,发现目标值已经收敛,就不再仿真了,从而得到所谓的最优解。

第二个是参数关联,用于建立参数之间的相互关系。

第三个是响应面,是根据前面的有限次仿真,找到设计变量和目标变量之间的关系,从而用一个所谓的响应面勾勒出来,实际上就是曲线拟合的问题。

最后一个是6sigma分析,所谓的鲁棒性分析,质量工程那一套。看看当设计变量发生某种变动(例如服从正态分布)的时候,我们的目标变量的变化如何,是否在我们所限定的范围之内。

这篇文章是对于ANSYS WORKBENCH的一个总体介绍,下篇文章再说明具体的学习方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭