当前位置:首页 > 单片机 > 架构师社区
[导读]原文:www.cnblogs.com/QG-whz/p/10372458.html为什么需要保证幂等性编程中的“幂等性”是指任意多次执行所产生的影响,与一次执行的影响相同。一个拥有幂等性设计的接口,保证无论一次或多次来调用接口,都能够得到相同的结果。接口的幂等性设计在某些场景下是...


为什么需要保证幂等性



编程中的“幂等性”是指任意多次执行所产生的影响,与一次执行的影响相同。一个拥有幂等性设计的接口,保证无论一次或多次来调用接口,都能够得到相同的结果。接口的幂等性设计在某些场景下是必需的,例如用户下单的场景。
我们知道,服务之间的调用存在三种状态:成功、失败、超时。超时是一种未知的状态:被调服务是否执行成功,这个状态是未知的。上游服务调用下游服务超时时可能会进行重试。对于用户下单的场景的超时重试我们考虑以下问题:
  • 是否会导致最终创建了两条一样的订单?
  • 是否会扣除两遍库存?
  • 是否会重复扣除用户的钱?

如果每一笔订单都携带唯一的序号,下单接口可以借助这个序号,来记录某次下单操作的状态。当下单的状态为成功时,就将重复的执行拦截住,避免出现上述的问题。这种方式是由下游被调方来保证幂等性。
除此之外,订单服务也可以提供查询订单状态的接口,上游在下单之前先进行查询,确认该笔订单并没有成功支付后,再重复进行下单操作。
一般来说,服务本身需要自己保证幂等性,而不应该将幂等性交给上游的调用方来做。

唯一ID



就上面的幂等性下单接口来说,要做到幂等性,就需要借助一个唯一的ID来标志每次交易。唯一ID的分配可以有几种方式:
  • 由一个统一的ID分配中心来分配。
  • 由上游服务来生成唯一ID,但必须保证不产生冲突的ID。

采用统一的分配中心来分配唯一ID时,业务方每次调用接口都多了一次调用分配中心获取唯一ID的请求。这多了额外的开销。获取唯一ID有一种方式,是借助mysql的自增索引,这其实也是一个ID分配中心。对服务性能有苛刻要求时,可以采用第二种方式,由主调服务本身来生成这个唯一ID。为了保持不会产生重复的ID,可以使用一下几种ID生成方法:

UUID



UUID的全称是Universally Unique Identifier,通用唯一识别码。具体可以看维基百科的介绍:https://en.wikipedia.org/wiki/Universally_unique_identifier
UUID是一个128bit的数字,用于标志计算机的信息,虽然UUID不能保证绝对不重复,但重复的概率小到可以被忽略。UUID的生成没有什么规律,为了保证UUID的唯一性,规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,以及从这些元素生成UUID的算法。这也就意味着:
  • 128bit,占据了太多的内存空间
  • 生成的ID不是人可以看懂的
  • 无法保证ID的递增,某些场景需要按前后排序 无法满足。

这是一个在线生成UUID的网站:https://www.uuidgenerator.net/ 你可以直观感受一下UUID。

Snowflake



这是Twitter的一个开源项目,它是一个分布式ID的生成算法,它会产生一个long类型的唯一ID,其核心算法是:
  • 时间部分:41bit作为毫秒数,大概可以使用69.7年
  • 机器编号部分:10bit作为机器编号,支持1024个机器实例。
  • 毫秒内的序列号:12bit,一毫米可以生成4096个序列号

如何避免重复提交?分布式服务的幂等性设计!
网上有各种语言实现的Snowflake算法的实现,有兴趣的阅读一下实现代码。
实际上,redis 或是 mongoDB 的全局ID生成器的算法和Snowflake算法大同小异。这是基于redis的分布式ID生成器实现:https://github.com/hengyunabc/redis-id-generator
它的核心思想是:

  • 使用41 bit来存放时间,精确到毫秒,可以使用41年。
  • 使用12 bit来存放逻辑分片ID,最大分片ID是4095
  • 使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID

共享存储



如果我们的幂等性服务是分布式的,那么存储唯一ID也需要采用共享的存储,这样每个服务就是无状态的了。可以使用mysql来存储,也可以使用k- v存储例如redis。我在自己的业务中就采用了redis来存储唯一key。

避免不必要的查询



并不是所有的请求都是重复的,生产环境下可能99%的请求都不是重复请求。如果每个请求在执行前都要去查询下唯一ID是否存在,可能会带来不必要的性能消耗。如果你使用mysql来存储唯一ID,那么可以直接进行insert,通过结果来判断是否插入记录成功,如果不成功则证明ID已经存在:
insert into ... values ... on DUPLICATE KEY UPDATE ...
而如果使用的是redis,也可以使用redis的setEx,设置成功则证明key不存在,否则key存在说明是重复请求。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭