当前位置:首页 > > 21ic电子网
[导读]大家好,我是LR梁锐。熟练使用示波器是电子工程师的必备技能,然而示波器的使用颇有些门道,一些老工程师一不小心也会中招。本文重点分析示波器的“假波”现象。 数字示波器的假波现象图1数字示波器观察到的假波现象在使用数字示波器时,是否会遇到输入信号频率为10MHz,而示波器测量出来却是...

示波器显示的波形可能是假的……


示波器显示的波形可能是假的……

大家好,我是LR梁锐。

熟练使用示波器是电子工程师的必备技能,然而示波器的使用颇有些门道,一些老工程师一不小心也会中招。

本文重点分析示波器的“假波”现象。

 

数字示波器的假波现象

示波器显示的波形可能是假的……

图1 数字示波器观察到的假波现象


在使用数字示波器时,是否会遇到输入信号频率为10MHz,而示波器测量出来却是远小于10MHz频率的信号波形,你可能会认为这是一个高频率小信号叠加低频率大信号,请不要急着做这样的结论,可能此时已经出现了假波现象了。


图1给出信号实际波形和假波的图形,从图中可以直观的看出假波和实际波形的区别。随后会讨论假波形成原因、特征以及如何判断测量中是否出现假波现象。


假波现象形成的原因

了解假波现象如何形成,就得要知道数字示波器的工作原理。图2是数字示波器工作原理框图,与模拟示波器不同,数字示波器通过模数转换器(ADC)把被测电压转换为数字信息。它捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止。对样值存储后,数字示波器再重构波形。显然示波器是否能重现真实的信号波形,其中关键的步骤就是采样。


根据奈奎斯特抽样定律,要保证信号在恢复时不发生混迭现象和失真,采样率至少为信号最高频率带宽的2倍以上。可想而知,如果示波器采样速率不高,无法建立起精确的波形记录时,就会出现假波现象,如图1所示显示为低频信号波形,或者触发显示为不稳定的波形。

 

示波器显示的波形可能是假的……

图2 数字示波器工作原理框图


假波现象的判断方法

在实际测量中可以通过以下4个方法判断示波器测量的波形是否为假波。


注:测试输入为10MHz,峰峰值800mV的正弦波信号。所用示波器是ZLG致远电子自主研发的ZDS1104,带宽100MHz,最大采样率1GSa/s,最大储存深度28MKpts,支持4通道输入。


1、旋转“t/div”旋钮改变水平时基档,如果波形形状剧烈变化,则可能出现假波现象。

 

示波器显示的波形可能是假的……

图3 水平时基20us/div、采样率50MSa/s

 

示波器显示的波形可能是假的……

图4 水平时基100us/div、采样率10MSa/s


从图3和图4中可以看出,当水平时基档从“20us/div”增加到“100us/div”时,波形发生剧烈变化,频率为10MHz的信号示波器测量为4.98KHz,可以判断时基档在“100us/div”出现波形为假波。


数字示波器采样率fs和水平时基档(t/div)有如下关系:

fs=N/((t/div))


其中数字示波器最大采样速率N是一个定值,可知水平时基档越大,采样率越小。水平时基档增加到“100us /div”时,采样率也从50MSa/s减小到10MSa/s,根据奈奎斯特抽样定律,此时的采样率小于信号频率的2倍,也就不能正确的重现波形了。


2、选择“峰值”捕获模式,如果波形形状剧烈变化,则可能有假波现象。

 

示波器显示的波形可能是假的……

图5 标准捕获模式

 

示波器显示的波形可能是假的……

图6 峰值捕获模式


“峰值”捕获模式,示波器将对最大值和最小值进行取样,因此可以检测更快的信号。图6中,捕获模式由“标准”改为“峰值”,采样率同样是10MSa/s,示波器显示的波形形状剧烈变化。可判断出图5中示波器显示波形为假波。


3、改变储存深度大小,如果波形形状剧烈变化,则可能有假波现象。

 

示波器显示的波形可能是假的……

图7 储存深度14Kpts

 

示波器显示的波形可能是假的……

图8 储存深度700Kpts


示波器的储存就是把经过A/D数字化后的二进制波形信息存储到示波器的高速CMOS内存中,内存的容量就是储存深度。储存深度M与采样率fs有这样的关系:

M=fs×(t/div)


由以上关系可知,提高示波器的储存深度可以间接提高示波器的采样率。图8中,储存深度由14Kpts改为700Kpts,波形形状发生剧烈变化,可判断出图7示波器显示波形为假波现象。仔细观察图5、图6和图7,都是由于示波器设置储存深度过小,导致采样率不足造成假波的产生。


4、选择“峰峰值测量”,在改变水平时基档、储存深度或者选择“峰值捕获”,当波形出现剧烈变化时,若峰峰值不改变,则出现假波现象。

 

图3至图8中都标出了峰峰值测量“PK-PK”,当水平时基档、储存深度和捕获模式改变,无论示波器显示信号波形怎么变化,但是峰峰值800mV并没有发生变化,可以说明示波器显示的波形为假波现象。




总结1、假波现象只会出现在数字示波器中,现在市场上基本都是数字示波器。


2、假波现象是由于采样率不足导致的。示波器最大的采样率是固定的,实际采样率是可变的,通过选择合适的时基档位和储存深度可以提高实际采样率,有效避免假波的产生。


3、示波器测量同一信号在不同时基档显示不相同频率波形时,请用以上4种方法判断是否为假波现象。



来源:ZLG致远电子版权归原作者所有,如有侵权,请联系删除。

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭