当前位置:首页 > 技术学院 > 电子技术资源
[导读]电容有两个重要特性,一个是隔直通交,另一个是电容电压不能突变,先来看一下对容抗的解释。

电容有两个重要特性,一个是隔直通交,另一个是电容电压不能突变,先来看一下百度百科对容抗的解释。

简单说,虽然交流电能通过电容,但是不同频率的交流电和不同容值的电容,通过时的阻碍是不一样的,把这种阻碍称之为容抗。

容抗与电容和频率的大小成反比,也就是说,在相同频率下,电容越大,容抗越小;在相同电容下,频率越高,容抗越小。

理想电容器

理想电容器阻抗如下图所示,和频率呈反比,随着频率的增加,阻抗逐渐减小,由于理想电容器中无损耗,等效串联电阻ESR为零。

理想电容器的阻抗Z公式为:

电容的等效模型

电容实际等效模型

理想的电容器在实际中是不存在的,电容的实际模型是一个ESR串联一个ESL,再串联一个电容,ESR是等效串联电阻,ESL是等效串联电感,C是理想的电容。

电容的等效模型

所以上述模型的复阻抗为:

电容器表现为容性

电容器表现为感性,因此会有一句话叫高频时电容不再是电容,而呈现为电感,这个电感不是说电容变成了电感,而是指此时的电容拥有了与电感类似的特性。

容抗矢量等于感抗矢量,电容的总阻抗最小,表现为纯电阻特性,此时的f称为电容的自谐振频率。

自谐振频率点是区分电容是容性还是感性的分界点,高于谐振点时,“电容不再是电容”,因此退耦作用将下降。实际电容器都有一定的工作频率范围,在工作频率范围内,电容才具有很好的退耦作用。ESL是电容在高于自谐振频率点之后退耦功能被消弱的根本原因。

下图是实际电容器的频率特性。

电容的等效模型

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭