当前位置:首页 > 公众号精选 > Murata村田中国
[导读]同学们,《静噪基础课程》本期继续开讲!上一章介绍的是产生电磁噪声的机制那么,有哪些因素会使噪声问题复杂化呢?第3 章  噪声 问题复杂 化 的因素   第1章为什么需要EMI静噪滤波器第2章产生电磁噪声的机制第3章噪声问题复杂化的因素3-1.简介3-2.谐振和阻尼3-2-1.并联...

同学们,


《静噪基础课程》本期继续开讲!


上一章介绍的是


产生电磁噪声的机制


那么,有哪些因素会使噪声问题复杂化呢?




第 3 章
噪 声 问 题 复 杂 化 的 因 素




第1章 为什么需要EMI静噪滤波器


第2章 产生电磁噪声的机制


第3章 噪声问题复杂化的因素


3-1.简介


3-2.谐振和阻尼


  • 3-2-1. 并联谐振和串联谐振


  • 3-2-2. 关于谐振电路EMC措施的问题


  • 3-2-3. 数字电路连接至谐振电路时


  • 3-2-4. 无电感器或电容器的情况下产生谐振的示例


  • 3-2-5. 电阻器及铁氧体磁珠的阻尼作用


  • 3-2-6. 数字信号的阻尼


3-3.噪声的传导和反射


3-4.源阻抗


3-5.小结


3-1简 介


第2章介绍了产生电磁噪声的机制,并特别详细地介绍了数字电路中产生的噪声。




要应对电子设备噪声干扰,不仅需要了解噪声源,还必须知晓传输路径和天线的特征本章节详细介绍了其中的传输路径。




在此之前,已经通过较为简单的表述解释了噪声的产生(谐波除外)。但是,在解释噪声传输和发射的机制时,会提及传输理论、电磁学和天线理论中使用的术语(如图3-1-1所示)。如果不理解这些术语,就无法处理噪声问题。




图3-1-1 第3章将要介绍的内容



因此,本章节将(尽量使用较少的公式)解释这些术语,并介绍关于噪声的重要课题,如谐振和阻尼、噪声传导和反射以及源阻抗。



3-2谐振和阻尼


在产生噪声或接收到噪声感应时,谐振是一个重要因素。
如果电路中包含意外建立的谐振电路,则会在谐振频率处产生非常大的电流或电压,更易产生噪声干扰。尽可能消除电路中的谐振是很重要的。如果要抑制谐振,需使用阻尼电阻器。
本章节将介绍谐振和阻尼电阻器。



3-2-1. 并联谐振和串联谐振



(1) LC谐振电路




谐振指的是电路中的感应电抗和电容电抗在特定频率处相互抵消,这个特定频率就叫做“谐振频率”。




尽管能产生电抗(阻抗的虚数分量)的典型元件是电感器 (线圈) 和电容器,但任何其他元件,甚至连简单的导线都可以是产生谐振的要素,因为它们仍具有非常小的电抗。




(尽管除上述元件之外,天线、平行板、传输路径等也可能导致与EMC相关的谐振,但此处我们只着重于电感器和电容器产生的LC谐振。)




(2) 谐振电路的阻抗



如图3-2-1所示,谐振电路分两种: 串联谐振和并联谐振。根据图3-2-2中的计算示例,串联谐振使阻抗降至较低值(理论上为零),而并联谐振使阻抗升到超高值(理论上为无穷大)。




图3-2-1 串联谐振和并联谐振




图3-2-2 谐振电路的阻抗(该图表示电抗在数轴上的大小)



(3) 电抗抵消为零



如图3-2-3所示,电感器电抗和电容器电抗的量值在谐振频率处变为相等,两者相互抵消,最终相加之和为零。




图3-2-3 串联谐振使阻抗降至较低值的机制



图3-2-3解释了串联谐振的情形;如果是并联谐振,则将电抗替换为电纳(导纳的虚数成分),会出现电纳在谐振频率处被抵消为零。因此,阻抗升到超高值,这很容易理解。



(4) 谐振频率



无论是串联谐振还是并联谐振,都可以通过以下公式估算出谐振频率ƒ0。在图3-2-2的示例中,ƒ0约为50MHz。




公式3-2-1




(5) 谐振Q



谐振强度可通过指数Q(质量因子)来表示。Q越高表示谐振越强。指数Q也是用作表示电容器和电感器性能的指数。存在这样一种关系: 当使用Q值较大的电容器或电感器时,所建立谐振电路的Q值也较大。



如何估算Q值将在章节3-2-5中作解释。



(6) 电容器和电感器的自谐振



在高频范围内使用电容器或电感器时,由于其固有的寄生成分,电容器或电感器本身会在特定频率处导致谐振。这就叫做自谐振。



自谐振将在第6章中进一步讲述。



3-2.谐振和阻尼 - 重点内容


√ 谐振可以是串联谐振或并联谐振


串联谐振使阻抗在谐振频率处降到最低值(理论上为零)。


并联谐振使阻抗在谐振频率处升到超高值(理论上为无穷大)。


在谐振频率处,由于电压和电流极大,容易产生噪声问题


阻尼电阻器及铁氧体磁珠可用于抑制谐振。




附:第三章参考文献及下载



  1. [1] [Japanese] 電気理論(第2版),池田哲夫,森北出版 2006


  2. [2] High-Speed Digital Design: a Handbook of Black Magic,Howard Johnson, Martin Graham,Prentice Hall PTR, 1993


  3. [3] High-Speed Signal Propagation: Advanced Black Magic,Howard Johnson, Martin Graham,Pearson Education, Inc. 2003


  4. [4] [Japanese] よくわかるプリント板実装の高速・高周波対策,井上博文,日刊工業新聞社 2009


  5. 数字IC电源静噪和去耦应用手册 (点击下载PDF: 3.5MB) ,Murata Manufacturing Co., Ltd. Catalog C39C, 2010




下课!


下节课,记得相约在静噪基础小课堂哟~




关于


村田


株式会社村田制作所是一家进行基于陶瓷的无源电子元件与解决方案、通信模块和电源模块之设计、制造与销售的全球领先企业。村田致力于开发先进的电子材料以及领先的多功能和高密度模块。公司的员工和制造基地遍布世界各地。业务咨询点这里



求分享


求点赞


求在看



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

源测量单元(SMU)和脉冲测量单元(PMU)是泰克4200A-SCS的两个模块,其在时域中测量及提供电流和电压。SMU和PMU以恒定速率获得测量数据,使用Clarius软件内置的FFT功能将时域电流数据转换成频域中的参数...

关键字: 噪声 测试测量

摘要:风门坳排涝站在机组更换电动机定子绕组后试运行过程中,通过检测发现机组运行噪声过大,导致无法通过验收。排查分析噪声产生的原因,通过试验发现是电动机与排风管之间采用刚性连接所致。将电动机与排风管的刚性连接方式改成柔性连...

关键字: 噪声 刚性连接 柔性连接

涉及对真实世界进行敏感测量的应用都是从准确、精密的低噪声信号链开始。现代高度集成的数据采集器件通常可以直接连接到传感器输出,在单个硅器件上执行模拟信号调理、数字化和数字滤波,这极大地简化了系统电子组成。但是,要使这些现代...

关键字: Python 信号链 噪声

南京2023年1月13日 /美通社/ -- 送走了艰难的2022,迎来了充满希望的2023。这个新年变得更加有意义,煮妇/煮夫们定是个个摩拳擦掌,准备在除夕大显身手一番。不过一联想到大多数家庭的厨房状况,总是一幅烟熏火燎...

关键字: 油烟机 噪音 BSP 噪声

我们都知道开关电源是很奇妙的东西。它们消除了线性电源中使用的笨重变压器,并提供高效的电源转换。他们可以上台或下台。如果输入电源降得太低,有些甚至足够聪明,可以处理这两种功能。而且它们变得易于使用:选择具有正确输入电压、输...

关键字: 开关电源 噪声

很多同学便把这个结论应用于所有场景,这是不对的,今日特撰新文,补充、拓宽下电阻噪声的问题,以及使用采样电阻的注意事项(ir drop+0 Ωpdn),环环相扣,欢迎点赞、收藏、转发。正所谓阴在阳之内,不在阳之对。凡事有坏...

关键字: 电阻 噪声 电压

当电路中的信号发生突变(特别是数字信号)时,信号经常会出现一个电噪声。这个噪声在一般环境下不会对外产生影响。但是在某些特殊情况下,该信号会对外产生较强的传导干扰,进而影响其他电路的正常工作

关键字: 电路 数字信号 噪声

(全球TMT2022年9月27日讯)Jabra推出Jabra Engage 50II及Engage 40两款全新联络中心耳麦。Jabra Engage 50 II采用了先进算法来检测用户语音波形及分析背景噪声。配备的3...

关键字: GE 耳机 噪声 麦克风

摘要:针对轨道列车双开塞拉门气动锁闭装置动作噪声过大的问题,通过分析锁闭装置的结构和工作原理,判断锁闭动作过程中的噪声来源,进而制订了针对性优化方案。对比优化前后锁闭装置的动作噪声,结果显示,采用优化方案的锁闭装置动作噪...

关键字: 塞拉门 锁闭 噪声

南京2022年9月15日 /美通社/ -- 9月18日是世界清洁地球日。说起当下地球的“恶劣环境”,想必是大家有目共睹的,这其中”垃圾“已成为人类难以避免的”公害“,所以才会以节日的形式来提醒大家要通过改变行为模式以应对...

关键字: 油烟机 噪音 LINK 噪声
关闭
关闭