当前位置:首页 > 技术学院 > 技术前线
[导读]电子管工作原理,图文并茂,言简意赅

先前我们了解到,电子管并没有完全淘汰,还在音频领域发光发热。


电子管的结构和原理

那么作为,作为技术人才,咱们还是需要了解一些基本的知识,比如简单的历史,工作原理,优劣势在哪里。

考虑只有很少的人会接触到电子管,本文也不会很深入的写(其实是因为我就知道皮毛)。仅供与人聊天使用,不至于是个“憨憨”。

电子管是怎么发明的

爱迪生效应

提到电子管的发明,首先需要提到爱迪生,就是发明电灯泡的那位。

要知道电灯泡刚发明的时候,灯丝很容易就烧断了,寿命很短。为了延长寿命,有一次爱迪生突发奇想:在灯泡内另行封入一根铜线,放在灯丝的上面,想用来阻止灯丝蒸发,延长灯泡寿命。

经过反复试验,灯丝虽然蒸发如故,但他却发现了一个稀奇现象,即灯丝加热后,铜线上竟有微弱的电流通过。铜线与灯丝没有物理连接,哪里来的电流呢?难道电流会在空中飞不成?


电子管的结构和原理

在当时,这是一件匪夷所思的事情。虽然爱迪生也不知道为什么,但是本着“不能放弃任何一个专利”的态度,他申请了专利,命名为“爱迪生效应”。

现在我们知道,这个电流的产生,是因为灯丝被加热到红炽状态后,灯丝上面会有非常活跃的电子,会脱离灯丝飞出去。正好灯丝上面有铜线,电子就飞到了铜线上面,因为有了电子的移动,自然就形成了电流(这个现象的专业名词应该是:零场热电子发射)

电子二极管诞生

不过呢,爱迪生搞了个专利之后就没再继续研究了。

十几年后,有个英国人,名字叫弗莱明。他发现了,如果在那个铜线上面加上正电,也就是在上图中电流表的位置加个电源,此时电流会大大增加。


电子管的结构和原理

这是因为加上电源之后,上面的铜丝带正电,而电子带负电,异性相吸,铜丝对电子有吸引力,就被吸过去了。

而如果加上负电,同性排斥,电子被排斥,到不了铜线,电流就没有了。


电子管的结构和原理

我去,这不是单向导电性吗,也就是二极管,世界上第一支二极管就这么出来了,这也使得了爱迪生效应有了真正的应用。

电子三极管的诞生

两年之后,有个美国人,叫德福雷斯特。他在这个灯丝与铜线之间,巧妙的伸进去一个线圈,然后给这个线圈通上电。发现,如果加上正电压,那么电流会增加,加上负电压,电流会减少,也就是说电流受这个线圈电压的影响。


电子管的结构和原理

这个装置其实就是电子管了——电子管被发明了。并且,那个夹在中间的线圈就叫栅极(是不是很熟悉?)

这个也很容易理解,中间的线圈加上正电,加强了对灯丝电子的吸引,而加上负电,就减小了灯丝对电子的吸引。

电子管工作原理

其实上面说的历史,已经把电子管的工作原理讲清楚了,这里再小结一下

电子管示意图如下所示,为了更好的理解,我把三极管也放上去了。

电子管也有三个极,阴极,栅极,和阳极,分别类似于晶体管的发射极e,基极b,集电极c 。

除此之外,电子管还有灯丝,工作的时候,给灯丝通上电,灯丝就会发热,然后灯丝把阴极烧热。阴极上面就会有比较活跃的电子,这时候如果在阳极上面加上正电,阳极就会把电子吸过去,形成电流。

在栅极上面加上正电压,那么对阴极电子的吸引力就会加强,电流增大。如果加上负电,那么吸引力就减小了,电流也就减小了。也就是说栅极能控制阳极到阴极的电流了,这也是晶体管的功能。

电子管的结构

电子管结构如图,左边是示意图,右边是实物。


电子管的结构和原理

需要注意的是,电子管里面是需要抽真空的。因为电子发射的时候,如果有空气,电子会撞到空气分子,这会大大降低电流。所以电子管也叫真空管。

正是因为电子管的这种结构,所以体积也做不小。

此外,绝对得真空是很难达到得,并且,使用时间久了之后,难免会漏气,所以电子管得寿命一般也短。

并且,灯丝需要加热,功耗自然很高。

正因为有上述这些缺点,晶体管代替了电子管,成为当今世界得主流。

不过呢,电子管也没有完全消失,在音频领域等少数领域还在使用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭