当前位置:首页 > 技术学院 > 技术前线
[导读]电压反馈(Voltage Feedback,VF)运放是最常见的运算放大器。但是,尽管电流反馈(Current Feedback,CF)运放已经面世有几十年,有很多设计者仍然不知道怎样应用它们。很多人都不是十分清楚“电流反馈”及其相关术语。实际上,电流反馈运放是一种互导倒数运算放大器,所以有一些专用的术语。但是,电流反馈运放和电压反馈运放的相似点远远多于二者的相异点。

2.理想模型

在理解电压反馈运放的工作模型时,理想电压反馈模型是一个很有效工具。图1 (a)所示为理想电压反馈模型,而图l(b)所示则为理想电流反馈模型。


电压反馈运放的特点

对于电压反馈运放,有:


电压反馈运放的特点

3.带有反馈的理想模型

在理想模型中引入负反馈,如图2 (a)和图2(b)所示,就变成了同相放大器,对于电压反馈运放而言,当引入负反馈时,那么负反馈最终会使误差电压Ve为零。同理,在电流反馈运放中采用负反馈时,负反馈最终会使误差电流为0,这也是电流反溃这个术语的由来。


电压反馈运放的特点

对于上面的两个电路,其传输函数描述的都是Vo和Vi之间的关系。


电压反馈运放的特点

对于以上两个电路,增益都可以看做是1+R2/R1的函数,两式的右边第二项被看作是误差项。对于电压反馈,如果AF足够大(理想情况A为无穷大),则误差项可以忽略。同样,对于电流反馈,如果Zt足够大(理想情况Zt为无穷大),则误差项也可以忽略。

由以上对比可知,理想电流反馈运放和电压反馈运放的差别很小。

4.频率相关增益模型

运算放大器的开环增益,即电压反馈中的a,也叫A,电流反馈中的Zt,在真实环境中都是与频率相关的参数。图3中,在图1所示的理想模型上加入了一些额外的影响带宽的器件,关于此模型的推导将在后续推文中给出。


电压反馈运放的特点

同样,这里需要采用前面的方法来求解表征输入/输出关系的系统转移函数。


电压反馈运放的特点

5.频率相关的反馈模型

在运放的频率模型中加入如图2所示的负反馈网络,就得到了同相放大器,如图4所示,


电压反馈运放的特点

电压反馈同相运放的传输函数:


电压反馈运放的特点

电阻R2阻值决定了运放的-3dB带宽和截止频率,电阻R1的阻值决定其增益。因此,对于电流反馈运放的增益和带宽是相互独立的。

图5 (a)所示为电压反馈运放模型的增益和频率特性的波特图(Bode plot),图5 (b)所示为电流反馈运放模型的增益和频率特性的波特图。


电压反馈运放的特点

6.电流反馈运放(CF)应用电路

CF运放与VF电压反馈运放在应用电路上是相似的,主要注意反馈电阻R2(一般也叫Rf)的选取直接影响闭环带宽和电路稳定性,不能任意选择,一般按厂家推荐值选择,不要偏离推荐值太远,另外在反馈回路上不要使用电容直接将输出连接到反相输入:


电压反馈运放的特点


电压反馈运放的特点


电压反馈运放的特点


电压反馈运放的特点


电压反馈运放的特点


电压反馈运放的特点

7.总结

电压反馈运放是一个电压放大器,其开环增益为a(f),而电流反馈运放为一个互导倒数放大器,其开环增益为Zt(f),。负反馈对于两种放大器的效果都是一样的,都使输入为0,即Ve->0和ie->0。这也是它们得名为电压反馈和电流反馈的原因。当配置为带负反馈的同向放大器时,它们都能获得电压增益,具体增益由反馈网络决定。具体而言,两种放大器的开环增益分别为a(f)和Zt(f),都是和频率相关的,且都限制了工作的带宽。

对于电压反馈运放而言,其在正常工作的频带内,增益带宽乘积是一个常数。而对电流反馈放大器而言,其增益和带宽却是相互独立的,可以通过设定电阻R1和R2的值得到不同的增益和带宽。

电压反馈运放的主要优点是稳定的单位增益,所以设计者不必为了得到稳定的增益而花费心思去构建补偿电路。但是,也正是这一点限制了其工作带宽,也限制了放大器的应用场合。

对于电流反馈运放,它的稳定性由负反馈电阻R2决定。,想维持电路的稳定,R2必须大于一个最小值,与之对应,有一个最大的工作带宽。基于上述原因,如果将一个缓冲放大器的输出短接到负反馈的输入(即R2=0)时,电流运放电路就会振荡。而且,在作积分器和低通滤波器应用时,应该慎重考虑负反馈中的电容。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭