当前位置:首页 > 嵌入式 > Linux阅码场
[导读]前几天,宋老师写了2篇文章:超线程SMT究竟可以快多少?超线程SMT究竟可以快多少?(AMDRyzen版)宋老师的SMT测试很有意思,但是编译内核涉及的因素太多了,包括访问文件系统等耗时受到存储器性能的影响,难以估算,因此很难评判SMT对性能的提升如何。 为了探究SMT对计算密集...

前几天,宋老师写了2篇文章:线程SMT究竟可以快多少?
超线程SMT究竟可以快多少?(AMD Ryzen版 )

宋老师的SMT测试很有意思,但是编译内核涉及的因素太多了,包括访问文件系统等耗时受到存储器性能的影响,难以估算,因此很难评判SMT对性能的提升如何。
 

为了探究SMT对计算密集型workload的效果,我自己写了一个简单的测试程序。 

使用pthread开多个线程,每个线程分别计算斐波那契数列第N号元素的值。每个线程计算斐波那契数列时除线程的元数据外只分配两个unsigned long变量,由此避免过高的内存开销。 

workload的详细代码和测试脚本在[https://github.com/HongweiQin/smt_test] 

毫无疑问,这是一个计算密集型负载,我在自己的笔记本上运行,配置如下(省略了一些不重要的项目):
$ lscpuArchitecture: x86_64CPU(s): 12On-line CPU(s) list: 0-11Thread(s) per core: 2Core(s) per socket: 6Socket(s): 1NUMA node(s): 1Vendor ID: GenuineIntelModel name: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHzL1d cache: 192 KiBL1i cache: 192 KiBL2 cache: 1.5 MiBL3 cache: 12 MiB 

可以看到笔记本有一个Intel i7的处理器,6核12线程。经查,CPU0和CPU6共用一个Core,CPU1和CPU7共用一个Core,以此类推。 

以下的测试(Test 1-5)中,每个线程分别计算斐波那契数列第40亿号元素的数值。 

Test1:采用默认配置,开12线程进行测试。测试结果为总耗时45.003s。 

qhw@qhw-laptop:~/develop/smt_test$ time ./smt_test -f 4000000000threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=32 real0m45.003suser7m12.953ssys0m0.485s 

Test2:把smt关掉,同样的测试方法(12线程)。总耗时为25.733s。 

qhw@qhw-laptop:~/develop/smt_test$ cat turnoff_smt.sh#!/bin/bash
echo "turn off smt"sudo sh -c 'echo off > /sys/devices/system/cpu/smt/control'qhw@qhw-laptop:~/develop/smt_test$ ./turnoff_smt.shturn off smtqhw@qhw-laptop:~/develop/smt_test$ time ./smt_test -f 4000000000threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=32 real0m25.733suser2m23.525ssys0m0.116s 

对,你没看错。同样的workload,如果关掉smt,总耗时还变少了。Intel诚不欺我! 

Test3:再次允许smt,但是将程序限制在三个物理Core上运行,则总耗时为34.896s。 

qhw@qhw-laptop:~/develop/smt_test$ ./turnon_smt.shturn on smtqhw@qhw-laptop:~/develop/smt_test$ time taskset -c 0-2,6-8 ./smt_test -f 4000000000threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=32 real0m34.896suser3m17.033ssys0m0.028s
Test3相比于Test1用了更少的Core,反而更快了。

 

为什么在Test2和3会出现这样违反直觉的结果? 

 猜想:Cache一致性在作怪! 

图1

测试程序的main函数会分配一个含有T(T=nr_threads)个元素的`struct thread_info`类型的数组,并分别将每个元素作为参数传递给每个计算线程使用。`struct thread_info`定义如下: 

struct thread_info {pthread_t thread_id;int thread_num;unsigned long res[2];}; 

结构体中的res数组用于计算斐波那契数列,因此会被工作线程频繁地写。 

注意到,sizeof(struct thread_info)为32,而我的CPU的cacheline大小为64B!这意味着什么? 

图2

如图所示,如果Thread 0在Core 0上运行,则它会频繁写tinfo[0],Thread 1在Core 1上运行,则它会频繁写tinfo[1]。 

这意味着,当Thread 0写tinfo[0]时,它其实是写入了Core 0上L1 Cache的Cacheline。同样的,当Thread 1写tinfo[1]时,它其实是写入了Core 1上L1 Cache的Cacheline。此时,由于Core 1上的Cacheline并非最新,因此CPU需要首先将Core 0中的Cacheline写入多核共享的L3 Cache甚至是内存中,然后再将其读入Core 1的L1 Cache中,最后再将Thread 1的数据写入。此时,由于Cache 0中的数据并非最新,Cacheline会被无效化。由此可见,如果程序一直这样运行下去,这一组数据需要在Cache 0和1之间反复跳跃,占用较多时间。 

这个猜想同样可以解释为什么使用较少的CPU可以加速程序运行。原因是当使用较少的CPU时,多线程不得不分时共用CPU,如果Thread 0和Thread 1分时共用了同一个CPU,则不需要频繁将Cache无效化,程序运行时间也就缩短了。 

 验证猜想:增加内存分配粒度! 

对程序进行修改后,可以使用`-g alloc_granularity`参数设定tinfo结构体的分配粒度。使用4KB为粒度进行分配,再次进行测试: 

Test4:12线程,开启SMT,分配粒度为4096。总耗时为13.193s,性能相比于Test1的45.003s有了质的提升! 
qhw@qhw-laptop:~/develop/smt_test$ time ./smt_test -f 4000000000 -g 4096threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096 real0m13.193suser2m31.091ssys0m0.217s 

Test5:在Test4的基础上限制只能使用3个物理Core。总耗时为24.841s,基本上是Test4的两倍。这说明在这个测试下,多核性能还是线性可扩展的。 

qhw@qhw-laptop:~/develop/smt_test$ time taskset -c 0-2,6-8 ./smt_test -f 4000000000 -g 4096threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096 real0m24.841suser2m26.253ssys0m0.032s 

超线程SMT究竟可以快多少? 

表格和结论: 

测试名 硬件配置 运行时间(s)
Test6 “真”6核  38.562 
Test7“假”6核 58.843
Test8“真”3核  73.175 
 

测试使用的是6个工作线程。为了减少误差,增加一点运行时间,每个线程计算斐波那契数列第200亿项的值。 

对比Test6和7,可以看到SMT的提升大概在52.6%左右。 

测试记录: 

Test6:别名“真”6核,使用6个关闭了SMT的物理核进行计算。总耗时为38.562s。 

Test7:别名“假”6核,使用3个开启了SMT的物理核进行计算。总耗时为58.843s。 

Test8:别名“真”3核,使用3个关闭了SMT的物理核进行计算。总耗时为1m13.175s。 

qhw@qhw-laptop:~/develop/smt_test$ cat test.sh#!/bin/bash
fibonacci=20000000000sudo printf "" ./turnoff_smt.shtime ./smt_test -f $fibonacci -g 4096 -t 6 ./turnon_smt.shtime taskset -c 0-2,6-8 ./smt_test -f $fibonacci -g 4096 -t 6 ./turnoff_smt.shtime taskset -c 0-2,6-8 ./smt_test -f $fibonacci -g 4096 -t 6 ./turnon_smt.shqhw@qhw-laptop:~/develop/smt_test$ ./test.shturn off smtthreads_num=6, fibonacci_max=20000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096 real0m38.562suser3m50.786ssys0m0.000sturn on smtthreads_num=6, fibonacci_max=20000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096 real0m58.843suser5m53.018ssys0m0.005sturn off smtthreads_num=6, fibonacci_max=20000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096 real1m13.175suser3m39.486ssys0m0.008sturn on smt

更多精彩,点击关注"Linux阅码场"

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭