当前位置:首页 > 消费电子 > 消费电子
[导读]使用相同的微控制器(此例是FPGA),分别测量内和外时钟Σ-Δ调制器的信噪比(SNR)。这两类Σ-Δ调制器的测量设置是相同的,只是外时钟Σ-Δ调制器需要一个20MHz的外时钟源提供时钟信号。下面的图2a和2b显示了测量设置。将1kHz正弦波模拟电压信号注入Σ-Δ调制器的输入端

在本文中,将详细研究这两类隔离Σ-Δ调制器的输出数据信号完整性。并通过简单的电磁干扰(EMI)测试设置、对由这两类Σ-Δ调制器的高频时钟信号产生的EMI进行比较。

隔离型Σ-Δ调制器的简化框图

图1左侧的简化框图说明了典型的内(部)时钟隔离Σ-Δ调制器;右侧是典型的外(部)时钟隔离Σ-Δ调制器。对于内时钟型来说,抖动极低的时钟源构建在与Σ-Δ编码器相同的芯片上。重新生成输出MCLK,以允许输出数据位流MDAT被脉送进微控制器以进行抽取和滤波。对于外时钟型来说,外时钟源为Σ-Δ调制器和微控制器提供时钟信号。将在隔离栅的另一侧检测时钟信号。检测器必须能够承受一定程度的时钟抖动,并重构时钟信号,以实现Σ-Δ编码器的正常功能。

内时钟和外时钟隔离调制器时钟信号产生EMI的对比分析图1:左图是内时钟隔离的Σ-Δ调制器简化框图;右图是外时钟隔离的Σ-Δ调制器的简化框图;两者都连至微控制器。

输出数据信号完整性

使用相同的微控制器(此例是FPGA),分别测量内和外时钟Σ-Δ调制器的信噪比(SNR)。这两类Σ-Δ调制器的测量设置是相同的,只是外时钟Σ-Δ调制器需要一个20MHz的外时钟源提供时钟信号。下面的图2a和2b显示了测量设置。将1kHz正弦波模拟电压信号注入Σ-Δ调制器的输入端,然后在FPGA处对相应的数字输出比特流数据进行采样,并经过称为抽取的滤波过程。笔记本电脑上显示的应用图形用户界面(GUI)显示了重构的正弦波、快速傅里叶变换(FFT),FFT用以计算信噪比(SNR)和SNR历史图与时间的对应关系。如果FPGA未能正确采样Σ-Δ输出数据比特流,则将清楚地观察到历史图上SNR的突然下降。

示波器捕获的图像,内时钟Σ-Δ调制器的输出MCLK信号似乎是抖动的。但从输出时钟MCLK的上升沿到输出数据MDAT的上升沿或下降沿的时间延迟,对每个时钟周期看来都是相同的。同样,从外时钟到其输出MDAT的时间延迟似乎也是稳定的。这里可得出结论:对这两类Σ-Δ调制器,MDAT在每个时钟周期始终与MCLK同步。

内时钟和外时钟隔离调制器时钟信号产生EMI的对比分析图3:显示了示波器捕获的两类Σ-Δ调制器的MCLK和MDAT图像从图4中所示的SNR历史图与时间的对比来看,对于两类Σ-Δ调制器都没有观察到SNR的突然下降。换句话说,FPGA(微控制器)可正确读取这两类Σ-Δ调制器的输出数据(MDAT)。

内时钟和外时钟隔离调制器时钟信号产生EMI的对比分析图4:显示了应用GUI软件中的测量结果

高频时钟信号产生的EMI

高频时钟信号是系统PCB板上EMI的主要来源之一。时钟频率越高、PCB走线越长,时钟信号产生的EMI就越严重。内时钟Σ-Δ调制器的时钟信号走线可以更短。一些内时钟的Σ-Δ调制器还结合了扩频技术来扩展时钟信号的频率峰值,以有效降低EMI。为证明这点,设置了一种如图5所示的简单EMI测量方法,以分别测量内和外时钟Σ-Δ调制器的时钟信号产生的EMI。将环形天线放置在Σ-Δ调制器评估板上方5cm处。示波器设置为将频率从0Hz扫频到100MHz。

内时钟和外时钟隔离调制器时钟信号产生EMI的:显示了该简单的EMI测量设置,用于测量两类Σ-Δ调制器的时钟信号的EMI从图6中示波器捕获的图像可以清楚看出,外时钟源产生的EMI要高得多,在时钟信号频率及其谐波处达到峰值。例如,对于60MHz的三次谐波,外时钟源产生的EMI比内时钟Σ-Δ调制器输出时钟信号的高20dB。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭