当前位置:首页 > 消费电子 > 消费电子
[导读]演化脉络下图所示CNN结构演化的历史,起点是神经认知机模型,已经出现了卷积结构,但是第一个CNN模型诞生于1989年,1998年诞生了LeNet。随着ReLU和dropout的提出,以及GPU和

演化脉络

下图所示CNN结构演化的历史,起点是神经认知机模型,已经出现了卷积结构,但是第一个CNN模型诞生于1989年,1998年诞生了LeNet。随着ReLU和dropout的提出,以及GPU和大数据带来的历史机遇,CNN在12年迎来了历史突破。12年之后,CNN的演化路径可以总结为四条:1)更深的网络,2)增强卷积模的功能以及上诉两种思路的融合,3)从分类到检测,4)增加新的功能模块。

 

 

开始-LeNet

 

 

1998年,LeCun提出LeNet,并成功应用于美国手写数字识别。但很快,CNN的锋芒被SVM和手工设计的局部特征盖过。

转折点-AlexNet

 

 

AlexNet 之所以能够成功,深度学习之所以能够重回历史舞台,原因在于:

非线性激活函数:ReLU

防止过拟合的方法:Dropout,Data augmentation

大数据训练:百万级ImageNet图像数据

其他:GPU实现,LRN归一化层的使用

第一条演化路径:网络变深

 

 

VGGNet 可以看成是加深版本的 AlexNet,参见 Karen Simonyan 和 Andrew Zisserman 的论文《Very Deep Convolutional Networks for Large-Scale Visual Recognition》。

VGGNet 和下文中要提到的 GoogLeNet 是2014年 ImageNet 竞赛的第二名和第一名,Top-5错误率分别为7.32%和6.66%。VGGNet 也是5个卷积组、2层全连接图像特征、1层全连接分类特征,可以看作和 AlexNet 一样总共8个部分。

第二条演化路径:增强卷积模块

 

 

首先要说起 NIN(Network in Network)的思想(详见 Min Lin 和 Qiang Chen 和 Shuicheng Yan 的论文《Network In Network》),它对传统的卷积方法做了两点改进:将原来的线性卷积层(linear convolution layer)变为多层感知卷积层(multilayer perceptron);将全连接层的改进为全局平均池化。

 

 

MIN使得卷积神经网络向另一个演化分支—增强卷积模块的功能的方向演化,2014年诞生了 GoogLeNet(即 Inception V1)。谷歌公司提出的 GoogLeNet 是2014年 ILSVRC 挑战赛的冠军,它将 Top-5的错误率降低到了6.67%。GoogLeNet 的更多内容详见 Christian Szegedy 和 Wei Liu 等人的论文《Going Deeper with Convolutions》。

 

 

ResNet依然是:没有最深,只有更深(152层)。听说目前层数已突破一千。ResNet主要的创新在残差网络,这也是现在火热的AlphaGo Zero主要技术之一。如图11所示,其实这个网络的提出本质上还是要解决层次比较深的时候无法训练的问题。这种借鉴了Highway Network思想的网络相当于旁边专门开个通道使得输入可以直达输出,而优化的目标由原来的拟合输出H(x)变成输出和输入的差H(x)-x,其中H(X)是某一层原始的的期望映射输出,x是输入。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭