当前位置:首页 > 消费电子 > 消费电子
[导读]随着锂离子电池能量密度的提高,传统的“含锂氧化物/石墨”电池结构已经难以满足高比能量锂离子电池的需求。在众多的新型高比能量电池中,Li-O2电池是其中佼佼者

随着锂离子电池能量密度的提高,传统的“含锂氧化物/石墨”电池结构已经难以满足高比能量锂离子电池的需求。在众多的新型高比能量电池中,Li-O2电池是其中佼佼者,比能量可以达到900Wh/kg以上,远超现有的锂离子电池技术。

Li-O2电池之所以有如此该的比能量主要是得益于其正极材料O2在空气中的储量几乎是“无限”的,因此正极的比容量也就是“无限”的,所以Li-O2电池容量的唯一的限制因素就是负极Li的数量。Li-O2电池的性能受到很多因素的影响,包括正极的反应机理、反应产物的形貌等因素都会对锂空气电池的放电特性产生较大的影响,而这些因素都主要依赖于电解液的选择。

来自美国西北太平洋国家实验室的Langli Luo等人近日利用环境透射电子显微镜对全固态Li-O2电池的反应机理进行了研究,研究显示在CNT表面首先形成LiO2化合物,随后该产物发生歧化反应生成Li2O2和O2,O2的释放生成了一个外层由Li2O构成,内层由Li2O2构成的中空球状结构。目前该型研究成果已经发表在了最新的Natural Nanotechnology杂志上。

环境透射电子显微镜能够在氧气环境下进行工作,从而使得在原子级别对锂氧电池的反应过程进行直接的观测成为可能。实验中Langli Luo利用载有纳米RuO2催化剂的CNT作为正极,金属Li作为负极,金属Li表层的Li2O作为固体电解质,电池结构如下图所示。

反应产物的形成过程如下图所示,从图上我们可以注意到,在反应开始不久后,就在三相界面出现了一个中空的球,随后这个球持续长大,从一开始直径50nm到最后生长到了200nm,随后该中空球结构开始收缩和坍塌。目前还不清楚,为何反应产物不形成固体颗粒或者是层状结构。为了对这其中的机理进行深入的理解,Langli Luo采用了局部电子衍射技术(SAED)对充放电过程中材料的相变进行了研究。

研究显示,初始反应产物LiO2很快会发生歧化反应生成Li2O2和O2,在颗粒内部释放的O2被封锁在了颗粒的内部,从而导致了颗粒成为中空结构,如下图所示。从SAED的分析结果来看,在开始的几秒钟时间内,反应产物中只有LiO2,30秒之后,Li2O2和LiO2开始共存,大约100s后LiO2的衍射峰消失,反应产物只剩下Li2O2和Li2O,TEM分析结果显示中空球的外侧为Li2O,内侧为Li2O2。充电过程则正好相反,开始的时候观察到了Li2O和Li2O2的衍射峰,在48s时出现了LiO2的衍射峰,但是在120s时并没有再出现LiO2的衍射峰,说明LiO2只是Li2O2分解的一个中间产物。整个过程为我们揭示了Li-O2电池的充放电反应途径,在放电的时候,Li+通过电解液扩散到CNT表面,在三相界面发生反应,生成LiO2,然后LiO2发生歧化反应(LiO2?Li2O2+O2),生成Li2O2和O2,反应释放的O2会将反应产物从最初的10nm左右,吹到100nm左右,而在产物的表面由于有丰富的Li+,因此会与O2反应生成Li2O。在充电的过程中,Li2O2首先会失去一个Li+和一个电子,形成LiO2,随后LiO2发生分解,产生Li2O2和O2,然后Li2O2再次失去Li+和电子,如此循环指导所有的Li2O2消耗完毕。

Langli Luo的工作为我们理解Li-O2电池的反应过程和机理作出重要的贡献,对Li-O2电池的电极设计具有重要的参考意义。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭