当前位置:首页 > 电源 > 电源
[导读]引言  在DC-DC变换器设计时要考虑对用电负载的保护以及因用电负载的失效而对DC-DC变换器的保护。航天器用DC-DC变换器由于其高可靠、不可维修的特殊要求,因此在设计之初就要开展失效模式及影响分析的工作,即考虑组

引言

  在DC-DC变换器设计时要考虑对用电负载的保护以及因用电负载的失效而对DC-DC变换器的保护。航天器用DC-DC变换器由于其高可靠、不可维修的特殊要求,因此在设计之初就要开展失效模式及影响分析的工作,即考虑组成DC-DC变换器的所有部件、元器件可能发生的各种故障对DC-DC变换器的影响,以及设计中相应的纠正措施,以保证不会造成灾难性的后果。

  电子线路类负载对电源的稳定性要求一般不超过电源电压的1%,在极端情况下不超过5%,机电类负载对电源的稳定性要求相对较宽。为了保证用电设备的安全及可靠运行,要针对电路中元器件及线路要素的各种失效模式设计过压保护电路。过压失效模式的分析中不考虑无关的双重故障,即认为两个无关电路的不同元器件同时失效为极小概率事件。

  二次电源过压失效模式分析

  DC-DC变换器是一个闭环反馈系统,对于不同电路拓扑引起输出过压的故障点不尽相同。例如对于非隔离的Buck变换器,其串联的功率MOSFET管一旦漏源极短路,输入电压会直接串到输出端。又如,采用磁隔离采样加输出二次稳压的多路输出DC-DC变换器,用于二次稳压的三端稳压器输入输出短路,也会导致输出过压。再如对于多路输出的DC-DC变换器,由于交叉调整率差会带来某路输出电压升高。

  对于一般单输出隔离式的DC-DC变换器,可能引起输出过压的失效模式见表1。

 一般过压保护电路设计

  一般输出端过压保护可以采取强制法,即通过过电压钳位和快速断路来实现。如通过在输出端并接齐纳二极管或可控硅实现钳位输出。见图1和图2。

[!--empirenews.page--]

  除变压器初次级短路造成输出过压的故障模式可以通过变压器的绝缘设计来克服外,针对表1所列的其余过压失效模式,本文设计了一种基于PWM的输出限压保护电路。

  基于PWM的输出限压保护电路

  脉宽调制型DC-DC变换器的输出稳压通过如下方式实现:输出电压采样值和基准电压值比较后产生误差信号Ve和锯齿波进行比较后产生一定占空比的方波驱动信号控制功率MOSFET管的导通,实现闭环反馈稳压输出。因此通过控制PWM误差放大器的输出电平就可以控制输出电压值,该电路就是基于这种原理设计的,电路见图3。电路基本工作原理如下:当DC-DC变换器工作于正常闭环状态时,PWM误差放大器工作在线性放大区,其输出电平取决于输入信号电平和放大器的增益。图3中的三极管V2工作在截至区,图3所示的过压保护电路不影响正常DC-DC变换器的正常闭环特性。当DC-DC变换器工作于开环状态时,误差放大器工作在饱和区。由于误差放大器不是理想运放,因此输出电阻不为零,因此将其简化为一个含内阻的电压源。三极管V2工作在线性放大区,可以将其简化为受控可变电阻,因此图3可以简化为图4所示的等效电路。当输出电压升高后,过压采样信号升高,导致Ib增大,使得V2的Ic增大,由于误差放大器内阻的存在,使误差放大器的输出电压Ve降低,这样就使PWM的方波驱动信号变窄,使输出电压降低,最终稳定在某一个电压值上。

  笔者用Saber-2005仿真软件对这一应用电路进行了仿真分析,仿真电路见图5。该电路是一个12V输出的反激变换器,PWM采用电流型脉宽调制器UC1845。

[!--empirenews.page--]

  电源正常输出电压为11.973V,电源输出5ms后,采样环路断开,此时限压保护电路工作,将输出电压限制在13.3V左右,仿真结果见图6。

  改变电阻R15的值,可以调整输出电压的限压值。图7是电阻R15阻值与输出限压值的仿真结果曲线。可以看出电阻R15从100Ω变化到1kΩ时,输出限压值从13.445V变化到14.119V。

  结语

  本文探讨了航天器用DC-DC变换器的各种过压失效模式,并设计了一种基于任何PWM的通用过压保护电路,并给出了仿真结果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子电路中,电解电容的纹波电流承受能力直接影响其使用寿命和电路稳定性。准确测试纹波电流不仅能验证电容性能是否达标,也是电路设计可靠性验证的关键环节。以下从测试原理、设备准备、操作步骤到数据解读,全面介绍电解电容纹波电流...

关键字: 电解电容 纹波电流 电路设计

在高频DC-DC转换器设计中,电感作为核心储能元件,其性能直接影响转换效率、功率密度和热稳定性。据行业数据显示,磁芯损耗占电感总损耗的60%-80%,而磁芯材料的选择是决定损耗特性的关键因素。本文从磁芯损耗机制、频率响应...

关键字: DC-DC 铁氧体 电感

在高频DC-DC功率转换领域,推挽升压电路凭借其高效率(>95%)和大功率密度优势,广泛应用于电动汽车充电机、工业电源等场景。然而,实测数据显示,约35%的启动失败案例源于磁芯饱和与占空比失衡的耦合效应。本文通过解剖某4...

关键字: 推挽升压电路 磁芯饱和 DC-DC

在电子电路设计与实践中,稳压芯片是维持稳定输出电压的关键组件。然而,当我们将两个输出电压不同的稳压芯片的输出脚连接在一起时,会引发一系列复杂的物理现象和潜在风险。这一操作不仅违反了常规的电路设计原则,还可能对电路系统造成...

关键字: 稳压 芯片 电路设计

DC-DC是一种在直流电路中将一个电压值的电能变为另一个电压值的电能的装置,严格意义上LDO也是一种DC-DC,在电源芯片选型中,LDO和DC-DC则是两种完全不同的芯片。

关键字: LDO DC-DC

在当今电子技术飞速发展的时代,随着电子产品不断向小型化、高性能化迈进,印刷电路板(PCB)的设计变得愈发复杂和精密。过孔,作为 PCB 中连接不同层线路的关键元件,其对信号完整性的影响已成为电路设计中不可忽视的重要因素。...

关键字: 印刷电路板 电路设计 信号

在航天器运行环境中,高能粒子辐射是威胁系统可靠性的重要因素之一。单粒子翻转(Single Event Upset,SEU)是指单个高能粒子(如质子、重离子等)入射到半导体器件中,使器件的存储单元或逻辑状态发生非预期的改变...

关键字: SEU 航天器 单粒子翻转

马萨诸塞州安多弗,2025年5月19日,随着eVTOL在低空经济中快速增长,为这类应用设计电源系统时,空间和重量非常关键,而同样重要的是提供一个具有高可靠性、高效率、易于扩展、高功率密度、占用面积小和具有成本优势的供电网...

关键字: DC-DC 电源系统 eVTOL

DC-DC转换器包括升压、降压、升/降压和反相等电路。DC-DC转换器的优点是效率高、可以输出大电流、静态电流小。随著集成度的提高,许多新型DC-DC转换器仅需要几只外接电感器和滤波电容器。但是,这类电源控制器的输出脉动...

关键字: LDO DC-DC

在汽车行业向电动化转型的浪潮中,电动汽车(EV)与混合动力汽车(HEV)的市场份额逐步扩大。DC-DC 转换器作为这两类汽车的关键部件,其性能优劣直接关乎车辆电气系统的稳定运行与整体能效。随着车载系统的日益复杂,如高级驾...

关键字: 转换器 辅助系统 DC-DC
关闭