当前位置:首页 > 电源 > 电源
[导读] 摘要:Buck 型变换器包括Buck 变换器及其衍生的全桥变换器。文中以Buck 型变换器为控制对象,给出了频域补偿设计中模拟PID 控制器的零极点配置原则,实现了其比例、积分、微分系数的整定。在此基础上,运用连续系统

 摘要:Buck 型变换器包括Buck 变换器及其衍生的全桥变换器。文中以Buck 型变换器为控制对象,给出了频域补偿设计中模拟PID 控制器的零极点配置原则,实现了其比例、积分、微分系数的整定。在此基础上,运用连续系统离散化方法,最终完成数字PID 控制器的参数设计。MATLAB/SIMULINK仿真结果表明,通过上述方法设计实现的数字PID 控制器能够满足系统的控制要求,输出响应具有良好的静态与动态特性。

  0 引 言

  随着数字信号处理技术的日臻完善以及数字处理器价格的不断降低,数字控制在DC/DC 变换器中得到广泛应用。与模拟控制相比,数字控制具有更加优越的控制性能、更加稳定的系统输出,以及易于实现电源系统的智能化管理等诸多优势。

  数字PID 控制因其算法简单、鲁棒性好及可靠性高,广泛应用于DC/DC 变换器的数字控制领域。Buck 型变换器包括Buck 变换器及其衍生的全桥变换器。当前,数字PID 参数往往通过试凑法整定,耗时费力,同时控制性能欠佳、适应性较差。长期以来,人们一直在寻求更加有效的数字PID 参数整定方法。

  1  数字控制Buck 型变换器系统结构

  数字控制Buck 型变换器的系统框图如图1 所示。反馈控制回路中包含AD 采样器、误差生成器、PID 控制器以及PWM 波形产生器等模块,所有模块均以数字处理芯片作为载体,通过编程方式实现。



图1  数字控制Buck 型变换器系统框图

  2  数字PID 控制器设计

  数字系统是离散系统,但如果采样周期足够小,则数字系统可近似于连续系统。采用频域补偿设计方法实现模拟PID 控制器的参数整定,通过连续系统离散化处理,可最终实现数字PID 控制器的参数设计。

  2 .1  模拟PID 控制器的参数整定

  连续导电模式(CCM)下,Buck 型变换器控制对象的传递函数为:


  直流增益:
  ADC =nUi/Um,UM为PWM 产生器的锯齿波峰峰值;极点角频率:;;品质因数:Q=R√C/R。

  Buck 型变换器的典型频率特性曲线如图2 所示。

  由频率特性曲线可知:

  (1)幅频特性的低频段曲线平坦,欲消除闭环系统的稳态误差,补偿网络的设计应至少含有一个积分环节;(2)主极点wp由LC 输出滤波器产生,表现为一个双重极点,产生180°的滞后相移,系统相位裕量偏低。


 

图2  连续导电模式(CCM)下Buck 型变换器频率特性曲线[!--empirenews.page--]

  模拟PID 控制器的传递函数为:


 

  其比例、积分、微分形式为:


 


  式中:Kp =K(wz1 +wz2 )/(wz1 wz2 );Ki =K;Kd =K/(wz1 wz2 )。

  模拟PID 控制器的典型频率特性曲线如图3 所示。补偿网络可提供一个原点处极点用以消除系统的静态误差,同时提供两个零点可补偿主极点造成的180°滞后相移,有效提高系统的相位裕量。

  在分析了Buck 型变换器及模拟PID 控制器典型频率特性的基础上,采用频域补偿设计法配置补偿网络零极点,实现模拟PID 控制器的参数整定。

  模拟PID 控制器零极点配置原则如下:

  (1)选择补偿后系统开环传递函数的穿越角频率:

  穿越角频率wc一般取1/10 ~1/5 的开关角频率ws处,以在保证系统稳定性的前提下,使输出响应具有良好的动态特性;(2)确定补偿网络两零点角频率:补偿网络的两零点角频率wz1 、wz2设计为控制对象主极点角频率wp的1/2 左右,以补偿主极点产生的180°滞后相移,提高系统的相位裕量;(3)计算补偿网络的增益值:在穿越角频率wc处补偿后系统开环传递的增益为零,即|Gvdm(s )|s =jwc =1/|Gc (s )|s =jwc ,据此计算补偿网络增益值K。

  按照以上步骤即可完成模拟PID 控制器参数(Kp 、Ki 、Kd )的整定。



图3  模拟PID 控制器典型频率特性曲线

  2 .2  数字PID 控制器的参数设计

  数字PID 控制器的控制算式为:


  式中:Δup =e(k)-e(k-1 );Δu1 =e(k);ΔuD =e(k)-2e(k-1)+e(k-2)。

  模拟PID 控制器参数整定完成后,将模拟控制器离散化即可实现数字PID 控制器的设计。本文选用后向差分法作为连续系统离散化方法。

  后向差分公式为:


 

  选取采样周期T,对式(3 )进行离散化处理,整理得:


 


  将上式与数字PID 控制算式对比,可得模拟PID控制器参数离散化公式:

[!--empirenews.page--]

  3  Buck 型变换器数字PID 控制器设计实例

  仿真用Buck 及全桥变换器的电路参数如表1 所示,数字PWM 脉冲产生器均按D=u(k)/M 设计,其中M=4(M 对应于模拟PWM 产生器的锯齿波峰峰值Um)。

  模拟PID 控制器零极点均按照以下方式配置:wc=1/5ws ,wz1 =wz2 =1/2wp ,则模拟及数字PID 控制器整定参数如表2 所示,采样周期T=1×10-7s 。

表1  仿真用Buck 及全桥变换器电路参数


 

表2  仿真用Buck 及全桥变换器模拟及数字PID 控制器整定参数


 

  根据图1 所示的数字控制Buck 变换器系统框图,依据电路参数及数字PID 控制器整定参数,在MATLAB/SIMULINK 仿真环境中建立数字控制Buck 及全桥变换器仿真模型,仿真结果如下:

  额定负载条件下,数字控制Buck 及全桥变换器输出电压响应如图4 所示。


 

图4  额定负载条件下输出电压响应

  额定负载突变至50 %额定负载条件下,数字控制Buck 及全桥变换器的输出电压响应如图5 所示。


 

图5  负载突变情况下,输出电压响应

  4  结 论

  仿真结果表明,采用频域补偿设计方法整定模拟PID 控制器参数进而通过连续系统离散化方法设计实现的数字PID 控制器,能够满足Buck 型变换器系统的控制要求,输出响应具有良好的静态与动态特性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

DC-DC变换器集成电路/模块不仅成为各种功率电子设备的心脏,而且也成为各种功率电子设备和系统高效率、低功耗、安全可靠运行和自动化控制的关键。

关键字: 混合DC/DC 电源 变换器

环路补偿是设计DC-DC转换器的关键步骤。如果应用中的负载具有较高的动态范围,设计人员可能会发现转换器不再能稳定的工作

关键字: DC/DC 变换器 拓扑结构

DC-DC电源芯片是一种用于控制和调节直流电压的电路,为各种电子系统提供稳定可靠的DC电压。它们在移动设备、通信产品、汽车、医疗仪器和各种工业领域等各种应用中都有广泛的用途。

关键字: DC/DC电源 变换器 开关电源

DC-DC转换器是将一种直流电压或电流电平转换为另一种直流电压或电流电平的机电设备或电子电路。在大多数情况下,设备只使用一个电源。

关键字: 整流 DC/DC电源 变换器

随着半导体行业的发展,手机与通讯、消费类电子等下游需求的拉动,电源管理芯片的应用逐渐增加。相关政策和人才与市场接轨,产业环境不断完善,电源管理芯片进口替代效应明显增强。

关键字: DC/DC 电源 变换器

搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来

关键字: DC/DC 变换器 驱动电路

来自直流电源的能量会在DC-DC变流器中发生变换,由于其能在较宽范围内调整输出电压,内部使用开关元件将能量从源端尽可能吸取到负载端,以保证改变输出能量的稳定,耽误的损耗降至最低,实现输入和输出的能量变换。

关键字: DC/DC 电源 变换器

DC-DC电源芯片是一种用于控制和调节直流电压的电路,为各种电子系统提供稳定可靠的DC电压。它们在移动设备、通信产品、汽车、医疗仪器和各种工业领域等各种应用中都有广泛的用途。

关键字: DC/DC 电源 变换器

DC/DC变换器随着技术的发展不断进步,与变换器相关的技术也在不断发展,这些技术的发展也在一定程度上影响着变换器的发展。

关键字: DC/DC 变换器 航天器

今天,小编将在这篇文章中为大家带来双向直流变换器及其工作原理的有关报道,通过阅读这篇文章,大家可以对双向直流变换器具备清晰的认识,主要内容如下。

关键字: 双向变换器 变换器
关闭
关闭