当前位置:首页 > 电源 > 电源
[导读]WB121高速宽带跟踪型电量隔离传感器原理及其应用在各种自动检测、控制系统中,常常需要对高速变化的交直流电流、电压信号作跟踪采集,对比较复杂的波形作频谱分析。这类信号可能是高压、大电流等强电,也可能是负载能

WB121高速宽带跟踪型电量隔离传感器原理及其应用

在各种自动检测、控制系统中,常常需要对高速变化的交直流电流、电压信号作跟踪采集,对比较复杂的波形作频谱分析。这类信号可能是高压、大电流等强电,也可能是负载能力很差的弱电,或是幅值很小的信号。它们的一个共同特点是不宜直接与计算机类的系统相接,怕计算机干扰它,或是怕它干扰计算机,或是因信号太强、太弱,难于与计算机匹配。WB121高速宽带跟踪型电量隔离传感器正是针对用户的这种需求而设计的。本文将对该产品的性能及应用范围作概略介绍。
  WB121高速宽带跟踪型电量隔离传感器采用线性光电隔离原理,对电网或电路中的交流、直流或交直流混合的电流、电压信号进行实时测量,经隔离转换成跟踪输入信号的、有一定驱动能力的、标准的输出电压信号。WB121具有交直流通用、高精度、高隔离、宽频响、快响应时间、低漂移、低功耗、宽温度范围等特点;能直接与计算机、可编程控制器或其他数据采集器连接,用于各种快速反应波形的隔离跟踪测量;特别是可以在模拟量的高速数据采集系统、变频调速设备、可控硅控制设备及其他电气设备中用作跟踪测量。

工作原理
  WB121电量隔离传感器主要分为两类,即WBV121电压隔离传感器和WBI121电流隔离传感器。二者的工作原理,除输入电路略有不同外,其他都相同,原理框图如图1所示。输入电压Vin(或电流Iin)信号送至输入电路,后者将信号转换成某种标准电压,并赋予较强的驱动能力;光电隔离电路实现输入信号的线性变换及隔离处理;输出电路将信号进一步放大,同时实现整个传感器的量程调节,输出是跟踪输入信号、具有较强的驱动能力的标准化电压,方便用户使用。传感器内部还配备了DC/DC转换器,从辅助电源+E提取能量,供输入电路使用。

主要技术指标
  输入规格:输入电压0~50mV到0~1000V;输入电流0~1mA到0~5A;如外接分流器,输入电流可高达上千安培。
  输出电压:0~3.5V, 0~5V, 0~10V;
  精度等级:0.2级;
  温度漂移:150×10-6/℃;
  线性范围:0~120%标称输入;
  频率响应:DC~30kHz,最高可达100kHz;
  响应时间:15μs,最低可达4μs;
  输入阻抗:Ri=Vi×10kΩ/V,当Vx>1V时;Ri>1MΩ,当Vx≤1V时;也可在整个输入范围实现高阻输入;
  过载能力:10倍标称输入值,持续5s;特制品也可承受长期输入过载;
  负载能力:5mA DC;
  辅助电源:±12V;
  静态功耗:400mW;
  隔离耐压:>1.5kV DC,1分钟;
  输出纹波:<5mV AC ;
  环境温度:0~+50℃;
  外型尺寸:S型:99(宽)×63(高)×24(深)mm;E型:59(宽)×46(高)×21(深)mm;D型:32(宽)×23(高)×29(深)mm。

典型频率特性
  作为跟踪型传感器,其最重要的性能就是对输入信号的快速响应,有很宽的通频带。
  WB121典型特性如表1所示。其中方案3为标准型,方案1、方案2为特制型。其输出幅频特性和相频特性如图2、图3所示。图中,输入为正弦波,Vgi为跟踪电压输出有效值,Di为输出电压正弦波滞后输入电压正弦波的角度。Vgi0为输入50Hz信号时的输出电压有效值。Vg1、D1,Vg2、D2及Vg3、D3分别对应方案1、2及3。注意,为方便用户在较低频率下的应用,两图中横坐标标尺是不均匀的。
  其中响应时间是输入直流阶跃信号,输出电压达到满度输出值的90%时的延迟时间。
  输出纹波是当输入电压为0时,输出噪声电压有效值与满度输出电压有效值之比。
  表1

方案 响应时间 频带(3dB) 输出纹波
3(标准) 15μs 15kHz 0.05%
2(特制) 8μs 50kHz 0.1%
1(特制) 4μs 100kHz 0.1%
 
图2 WB121传感器幅频特性曲线           图3 WB121传感器相频特性曲线


  从图2和图3可见,在很宽的频率范围内,输出电压的幅度及相位都有很平坦的特性。这为用户进一步分析信号波形提供了方便。

应用简介
  WB121高速宽带跟踪型电量隔离传感器可以实时、准确地跟踪测量任意波形的电流、电压信号,将其隔离后输出具有标准值的电压信号。传感器可用于晶闸管输出的已严重失真的正弦波信号检测,经脉宽调制处理的PWM波检测,电力系统畸变波形检测,功率设备中的高速闭环反馈控制等。传感器实现了输入信号和输出信号的电隔离,其隔离绝缘电压达1.5kV以上。因此,输出信号与后续设备可直接连接。通常,后续设备可以是巡回检测装置、计算机控制系统、可编程控制器(PLC)及各种电力、电子控制设备等。
  WB121的典型应用如图4所示。传感器与后续设备靠近,输出端可接至设备的高速A/D等电路,信号由计算机等控制采样、处理。
  传感器典型的传递函数可近似表达为K=Vg/X,或Vg=K·X
  这里X表示输入电量,可以是交流、直流或交直流混合的电流、电压信号。Vg是有标准输出量程的电压量。一般地,K是一个与用户要求有关的正常数,即输出紧紧跟踪输入电量的变化。当输入信号频率高时,K不可再简化为一个常数,而与输入频率有关,如图2、图3所示。

灵活应用
  实现公式Vg=-K·X
  这里K为正常数,即输出量与输入量正好反向。这只要将输入信号的两端反接即可。
  实现公式Vg=K·X+A
  这里K、A为正常数,即输出量为在K·X的基础上再向上平移A大小的电压。例如,可将双向直流电量转换成单向直流电压;将交流电量转换成同样波形的直流电压。有的A/D转换器仅允许单向输入电压信号,这种变换有利于直接与A/D转换器相连。A值一般由用户提出,生产厂实现。
  实现公式Vg=-K·X+A
  这里K、A为正常数,即输出量为在-K·X的基础上再向上平移A大小的电压。举例,有个用户提出这样的要求:输入电压X变化范围是0~10V,要求输出对应电压是5~0V。从上式可见,只需取K=0.5和A=5V即可。
  灵活运用方式还有一些,不再细述。一般地,上述公式中的参数K、A,由用户提出,生产厂调校。如果用户需要临时对K、A作一些微调,也可打开传感器上的窗口,按使用说明书要求调整。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭