当前位置:首页 > 电源 > 电源
[导读]78XX系列稳压器(DC /DC)是电子产品中广泛采用的三端稳压器。对于较复杂的电路,各个模块电路有时候需要不同的电源电压来分别提供能量。遇到这种情况,如果只用一组单输出变

78XX系列稳压器(DC /DC)是电子产品中广泛采用的三端稳压器。对于较复杂的电路,各个模块电路有时候需要不同的电源电压来分别提供能量。遇到这种情况,如果只用一组单输出变压器产生一种电压,经过整流后,往往不能合理满足后级各DC /DC模块的使用要求。因为,不同数值的DC /DC模块的输入电压范围是有一定要求的,如果输入到DC /DC模块的电压不满足规定要求(例如:输入电压超过规定范围) ,往往会造成转换效率过低,甚至会因为功耗过大而烧坏DC /DC模块[ 1 ] 。遇到这种情况,通常采用方法是:

1)分别采用不同的降压变压器,产生出适合后级各DC /DC模块所需的交流电压,然后分别整流、稳压。从而产生各模块电路所需的直流电源电压;

2)采用次级多抽头的降压变压器,产生出适合后级DC /DC模块所需的交流电压,然后分别整流、稳压。

这两种方法虽然可行,但如果作为产品生产来讲,就显得不太合理。因为,对生产企业来说,不单要考虑产品性能,同时要考虑价格和生产的可操作性(生产工艺) 。也就是要考虑产品的性能价格比。性价比越高,其市场的竞争力就越强。

对于第一种方法,如果后级电路需要两种直流电源电压,例如5V、12V,分别用7805和7812来稳压的话,那么就需要两个电源变压器、两级整流电路。这样做势必增加材料成本、生产成本等,同时会增大线路板面积和产品的体积。

对于第二种方法,如果后级电路需要两种直流电源电压,例如5V、12V,分别用7805和7812来稳压的话,则要求电源变压器的次级至少有三个抽头,分别产生出两种适合7805和7812需求的交流电压,然后分别经过两级整流、稳压。这样的电源变压器市场上很少销售,而且价格很高,对产品的性价比也不利。如果后级电路需要的电源种类再增加,这些缺点会更加突出。

下面介绍一种既不增加成本又能满足电性能要求的电路。这种电路可以实现从较高的电源电压获取较低的直流电压,转换效率高,而不会因为DC /DC的输入电压超过规定范围而烧坏。因此,只需一个次级为双抽头的降压变压器,经过整流,然后供给不同的DC /DC模块,就可以产生出不同的直流电源电压

1 传统的稳压电路

 

 

上图 传统的7805稳压电路

上图为由7805构成常用电路[ 2 ] 。只需外接两个电容即可,电路简单适用。输入电压通常在7. 5~12V时转换效率较高,不用增加散热片。但是如果输入电压较高,会因为电流过大而导致转换效率降低,甚至会烧坏稳压芯片。如果对该电路稍作改进,就可以满足在较高输入电压时仍能高效率输出稳定的5V电压而不会烧坏芯片。

2 改进后的稳压电路

如果使用图1中的电路,那么您不用求助于电噪声很大的DC/DC转换器,也不必在降压电阻器中浪费功率,就能从电压较高并经整流的正弦电压源获得5VDC等很低的稳定电压。该应用需要一个稳定的5VDC源,但是变压器向全波桥式整流器供应18Vrms。在充电阶段,两个等值电解电容器C1和C2在通过正向偏置二极管D1和D2串联时,会接收充电电流。一个增强型P沟道MOSFET晶体管Q1,型号为 IRF9530,其栅极接收了由于齐纳二极管D4的正向电压降因而略微为正值的反向栅极偏置电压,因此保持断开。每个电容器均充到大约为整流电压峰值的一半与D1和D2带来的正向电压降之间的差值。全波桥式整流器D5,即Graetz桥,产生了这些电压降(参考文献1)。

 

 

当放电阶段开始时,D1获得反向偏置,而电容器C2则通过稳压器IC1带来的负载放电。随后,二极管D1的阳极电压继续下降,Q1的栅极至源极电压变为负,并且晶体管导通,使C1能通过正向偏置二极管D3向负载放电。事实上,两个电容器串联充电,并且向负载并联放电,从而把IC1输入端的原始整流电压和纹波电压降低了一半。在C1放电期间,齐纳二极管D4把Q1的栅极至源极电压箝位在其最高额定值范围内,由此来保护Q1。

为了正常运行,该电路需要最低负载电流,稳压器的静态耗电电流通常够用。另外,电容器C2一直充到来自D5的峰值电压。C1和C2的值以及其余元件的额定值取决于要求的最高负载电流。电阻器R1和R2的值并不关键。请注意Q1充当开关;选择某种导通电阻很低的器件就能限制Q1的功率耗散。

3 结束语

采用改进后的电路为后级电路供电,只需要一个电源变压器即可,通过不同的DC /DC变换电路,不仅能满足后级各模块电路供电电压要求,也不会对器件的安全性产生威胁。同时节省了线路板面积,提高了安装工艺。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭