当前位置:首页 > 电源 > 电源
[导读]1-4-2.并联式开关电源输出电压滤波电路上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。但在应用中,大多数并联式开关电源输出电压还

1-4-2.并联式开关电源输出电压滤波电路

上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。但在应用中,大多数并联式开关电源输出电压还是经过整流滤波后的直流电压,因此,一般开关电源的输出电路都带有整流滤波电路

图1-12是带有整流滤波功能的并联式开关电源工作原理图。图1-12中,Ui是开关电源的工作电压,L是储能电感,eL为电流iL在储能电感两端产生的反电动势,K是控制开关,R是负载。而图1-13、图1-14、图1-15分别是并联式开关电源控制开关K工作于占空比为0.5、< 0.5、> 0.5时,图1-12电路中各点的电压、电流波形。图图1-13、图1-14、图1-15中Ui是开关电源的输入电压,uo是控制开关K两端的输出电压,uc是滤波电容两端的输出电压,Up是开关电源输出的峰值电压,Uo是开关电源输出电压(平均值),Ua是开关电源输出的平均电压,iL是流过储能电感L的电流,iLm是流过储能电感L电流的最大值,Io是流过负载R的电流(平均值)。

 

 

当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L的电流iL开始增加,同时电流在储能电感中也要产生反电动势eL;当控制开关K由接通转为关断的时候,储能电感也会产生反电动势eL。eL反电动势的方向与开关K关断前的方向相反,但与电流的方向相同,因此,在控制开关K两端的输出电压uo等于输入电压Ui与反电动势eL之和。

因此,在Ton期间:

eL = Ldi/dt = Ui —— K接通期间 (1-43)

 

 

 

 

 

0.5">

 

对上式进行积分,可求得流过储能电感L的电流为:

 

 

(1-44)式中iL为流过储能电感L电流的瞬时值,t为时间变量;i(0)为的初始电流,即:控制开关K接通瞬间之前,流过储能电感L中的电流。当开关电源工作于临界连续电流状态时,i(0) = 0 ,由此可以求得流过储能电感L的最大电流为:

iLm =Ui*Ton/L —— K关断前瞬间 (1-45)

在开关关断Toff期间,控制开关K关断,储能电感L把电流iLm转化成反电动势,与输入电压Ui串联迭加,通过整流二极管D继续向负载R提供能量,在此期间储能电感L两端的电压eL为:

eL = -Ldi/dt = Uo-Ui —— K关断期间 (1-46)

式中负号表示反电动势eL的极性与(1-43)式相反,即:K接通与关断时电感的反电动势的极性正好相反。对(1-46)式进行积分得:

 

 

式中i(Ton+)为控制开关K从Ton转换到Toff的瞬间之前流过电感的电流,i(Ton+)也可以写为i(Toff-),即:控制开关K关断或接通瞬间,之前和之后流过电感L的电流相等。实际上(1-47)式中的i(Ton+)就是(1-45)式中的iLm,因此,(1-9)式可以改写为:

 

 

当开关电源工作于临界连续电流状态时,流过储能电感的初始电流i(0)等于0(参看图1-13),即:(1-49)式中流过储能电感电流的最小值iLX等于0。因此,由(1-45)和(1-49)式,可求得反转式串联开关电源输出电压Uo为:

 

 

一般,并联式开关电源的输出电压Uo都是取自输出电压uo脉冲电压的幅值Up ,经整流滤波以后储能滤波电容C两端的输出电压基本就是Up ,即:

Up = Uo —— 并联式开关电源 (1-51)

这里特别指出:(1-50)和(1-51)式的结果,虽然是以开关电源工作于临界连续电流状态的条件求得,但对于开关电源工作于连续电流状态或断流状态同样成立,因为,输出电压Uo只取其峰值电压Up,而不是取其平均值。

另外,并联式开关电源输出电压uo的平均值Ua与输入电压的大小相等,即:

Ua = Ui —— 并联式开关电源 (1-52)

由于其输出电压uo的幅值等于输入电压Ui与储能电感L产生反电动势eL之和,因此,并联式开关电源一般都是取其输出电压uo的幅值Up作为输出(电压幅值的提取方法留待后面详细讨论)。所以,并联式开关电源属于升压型开关电源。虽然并联式开关电源输出电压的幅度比输入电压可以提高,但其输出电压的平均值Ua与控制开关K的占空比D的大小无关,即:并联式开关电源输出电压的平均值Ua永远等于输入电压Ui 。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭