当前位置:首页 > 电源 > 电源
[导读]1 引 言 在各种隔离式DC/DC变换器中,单端正激式变换器是其中最简单且适合大电流输出的一类,因而正激式变换成为低压大电流功率变换器的首选拓扑结构。但因其高频开关变

1 引 言

在各种隔离式DC/DC变换器中,单端正激式变换器是其中最简单且适合大电流输出的一类,因而正激式变换成为低压大电流功率变换器的首选拓扑结构。但因其高频开关变压器磁通工作在磁滞回线的一侧,必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。同时由于工作在高频状态下,开关变压器漏感、分布电容等寄生参数的影响不能忽略,在开关转换瞬时,电抗元件的能量充放致使功率器件承受很大的热和电应力,并可导致开关管的电压过冲,这不仅意味着设计人员必须选用昂贵的高耐压功率开关管,同时也给电源的可靠性带来潜在威胁。为此常常还需设置各种缓冲吸收电路,但这降低了变换器的工作效率。

为了解决单端正激式开关电源中的磁复位与漏感储能问题,传统的解决方案有以下几种:

(1)、采用辅助绕组复位电路;

(2)、采用RCD箝位复位电路;

(3)、采用有源箝位复位电路。

其中方案1要求辅助绕组与初级绕组必须紧耦合,实际上因漏感的存在电路中仍需外加有损吸收网络,以释放其储能;方案2是一种有损复位箝位方式,因其损耗的大小正比于电路的开关频率,(和方案1中外加有损吸收网络一样)这不仅降低了电源本身的效率,也限制了电源设计频率的提高;方案3中需要附加一复位开关管与相关控制电路,增加了电路复杂性的同时,也带来了附加电路损耗与总成本的上升。

本文介绍一种新型无损箝位电路,无须额外附加辅助开关管,电路简单,可有效降低功率管的电压应力,箝位效果优异,且有利于电源工作效率的提高。

2 工作原理

新型无损箝位电路(图1)与上述方案1(图2)中采用辅助绕组的传统方法相类似,不同之处是增加一个箝位电容C2,但功率主回路上无需外加有损吸收网络。传统的方法是在变压器中附加一个去磁绕组N3,它与二极管D3串联后接到电源输入正极,N3起到去磁复位作用,功率管S漏源间并联的RC网络,用于吸收变压器的初级漏感储能,防止产生过电压尖峰,保护功率管S免被击穿,见图2所示。图1中的箝位电路由辅助箝位绕组N3、箝位二极管D3、箝位电容C2组成。辅助箝位绕组N3的与初级绕组N1相同,目的是为了实现当功率开关管S漏源间电压VS上升到2VI时,加在初级绕组N1上的电压等于VI,因N1、N3匝数相等,箝位绕组N3的电压也必然是VI,此时D3恰好正偏导通。

下面结合图1与图3具体分析新型无损箝位电路的工作原理。

1) T0时刻为初始状态,设功率开关管S处于关断状态,此时(B点电压)VS等于VI,箝位电容C2通过初级绕组N1、箝位绕组N3被充电至VI,电容极性为左负右正。

2)在T1~T2期间,功率管S导通,由于箝位绕组与初级绕组电压相同,参照图1所示的同名端可知,VA为-VI,二极管D3反向偏置截止。在此期间,变换器实现功率的变换,能量从初级传到次级。

3)在T2时刻,功率管S关断,变压器中的漏感与磁化储能给功率管等寄生分布电容充电,(B点电压)VS最终上升到2VI,A点电位也从- VI 上升为+VI ,若此时B点电位进一步上升,二极管D3将正向偏置导通,功率管S漏源间的电压VS通过电容C2和二极管D3得到有效箝位。

4)在T2~T3期间,反射在初级的负载电流Io下降,其下降的速率由初级与次级间的漏感决定,该电流通过箝位电容C2、箝位二极管D3回流至电源,流过电容C2的电流引起其端电压上升(设其增量为dVS),导致B点电位变化为2VI+dVS。

5)在T3时刻,由于出现输出二极管D1的反向恢复,反射到的初级电流Io出现负值,箝位二极管D3停止导通,因功率管S的漏源间存在输出电容Cp,(B点电位)VS出现下降直到输出二极管D1反向反射电流小于初级磁化电流并在T4时刻等于零为止。

6)在T4~T5期间,正在减少的正向磁化电流将引起B点电位VS再次向2VI上升,直到箝位二极管D3再导通,将VS箝位在比2VI稍高的电位上。

7)在T5时刻,初级磁化电流减为零,箝位电容C2通过初级绕组N1、箝位绕组N3向电源VI放电,回送电容储能,VS跌至VI。

8)下一时刻重复以上过程。

3 关键电路参数设计

(1)箝位电容计算

从上文分析可知,箝位电容C2的取值决定了功率管漏源间电压VS超出VI值的多少,超出的电压dVS近似计算方法见式 (1):

dVS =0.5(Io/Nps)(T2-T3)/C (1)

式中 Nps是初次级匝比,Io是负载电流。

因VS的上升时间与T2-T3间隔相比甚小,可忽略不计,故

dT= T2-T3=LS(Io/ Nps)/VI (2)

式中是LS相对于初级绕组的初次级间漏感

联解(1)、(2)式可得:

dVS =0.5(Io/Nps)(LS Io/Nps)/(VI×C)=0.5LS(Io/Nps)2/(VI×C)(3)

(2)箝位二极管设计选择

二极管D3的峰值电流定额必须大于Io/Nps,同时其平均电流定额IAV至少必须等于:

IAV=0.5(Io/Nps)(dT/T)(4)

式中T是开关周期

二极管的电压定额必须超过2VI

(3)箝位绕组匝数计算

绕组匝数N3越多,电源允许的最大占空比越小,功率开关管S上的电压应力越低,但占空比小,开关变压器的利用率低。综合考虑最大占空比和开关管的电压应力,一般选择箝位绕组匝数和初级绕组匝数相同,即

N3=N1 (5)

4 应用实例

设计了一应用于输入为220Vac(187Vac~242Vac)、输出为20V/8A的正激变换高频开关电源,工作频率是200kHz,最大占空比为0.45,采用新型无损箝位电路,铜线的趋肤深度为Δ=0.148mm。按照上述设计方法,设计的电源变压器有关参数如下:

磁芯规格ETD34,磁芯材料为3F3, Philips;

初级绕组28匝;复位绕组28匝;次级绕组9匝。

设计出的变压器的初级励磁电感值实测为Lm=748.40μH,次级电感值实测为Ls=64.7μH,初级漏感电感值实测约为63μH,箝位电容C=4700Pf,箝位二极管选用MUR4100。

利用示波器测试其在输入220VAC、输出20V/8A条件下,功率开关管漏源极电压波形如下图4所示,测试结果表明过压尖峰得到了有效抑制,实现了无源无损箝位的目的。

5 结 语

本文介绍了一种无损箝位电路在单端正激电源中的应用,着重分析了工作原理,并给出关键电路参数的设计。用一种峰值电流模式控制芯片UC1825设计的某型电源,已配套应用于军用、民用产品,取得了良好的性能。实验结果表明非常有效地抑制了过压尖峰,实现了无源无损箝位。这种新型电路,拓扑简单可靠,可移植于如单端正激、单端反激、SEPIC、CUK以及ZETA等拓扑电路中,应用前景广阔。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

-三款新器件助力提升工业设备的效率和功率密度-

关键字: SiC MOSFET 开关电源

在现代科技飞速发展的时代,电子产品已广泛渗透到人们生活和工业生产的各个角落。从日常使用的手机、电脑,到工业生产中的各类精密设备,都离不开稳定可靠的电源供应。而开关电源系统作为电子产品的核心供电部件,其性能与稳定性至关重要...

关键字: 开关电源 雷电 浪涌

开关电源凭借其体积小、重量轻、效率高的显著优势,在现代电子设备中广泛应用。然而,由于其工作在高频开关状态,不可避免地会产生电磁干扰(EMI)。这种干扰不仅会影响自身性能,还可能对周围其他电子设备的正常运行造成严重干扰。因...

关键字: 开关电源 电磁干扰 高频

PCB设计在EMI抑制中起着关键作用。合理的布局布线能够有效减少信号的电磁辐射和相互干扰。首先,应将功率电路和控制电路进行物理隔离,避免功率电路中的大电流、高电压信号对控制电路造成干扰。功率器件和电感等高频器件应尽量靠近...

关键字: LED 开关电源

开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。

关键字: 开关电源 电源

同步整流和非同步整流是开关电源中两种不同的整流方式,它们的主要区别在于续流回路中使用的元器件及其控制方式。

关键字: 电流 开关电源

在现代电子设备的庞大体系中,开关电源宛如一颗璀璨的明珠,凭借其高效、紧凑、灵活等诸多卓越特性,广泛应用于从日常电子消费品到复杂工业设备的各个领域。从我们爱不释手的智能手机、平板电脑,到功能强大的服务器、精密复杂的医疗设备...

关键字: 开关电源 电子设备 供电

反激式开关电源以其电路结构简单、易于实现等优势,在众多电子设备中得到广泛应用。在反激式开关电源的诸多参数中,输出整流器占空比是一个关键变量,它对电源的损耗有着重要影响。深入研究二者关系,对提升反激式开关电源的性能与效率意...

关键字: 反激式 开关电源 输出整流器

在开关电源实际布线时,首先要根据实际应用,仔细分清楚各种地线的种类,然后依据不同地线的特点和电路的需求选择合适的接地方式。不论采用何种接地方式,都必须始终遵守 “低阻抗,低噪声” 的原则,以确保接地的有效性,减少电磁干扰...

关键字: 布线 开关电源 电磁干扰

开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自...

关键字: 开关电源 电源
关闭