当前位置:首页 > 电源 > 电源
[导读]现代电子系统设计都需要一个恒定输出的供电电源,无论输入电压还是负载电流发生变化,只要这些变化在稳压源的运行范围内,稳压源都要保证电路有恒定的连续的电压输出。在便

现代电子系统设计都需要一个恒定输出的供电电源,无论输入电压还是负载电流发生变化,只要这些变化在稳压源的运行范围内,稳压源都要保证电路有恒定的连续的电压输出。在便携式系统中,输入电压常常来自电池或直流电压源,而系统所用的芯片越来越多,芯片的功耗也越来越大,系统各芯片对电源的电压、电流和性能要求也多种多样。开关电源以PWM技术为主,通过改变脉冲的占空比调节输出电压,如何根据电压和电流情况并考虑性能、功耗和体积等因素在众多的电源芯片中选型并优化,是电子系统设计中面临的重要问题。借助于TI最新的WEBENCH电源设计工具可以在TI众多的电源芯片中挑选出适合项目的芯片并进行外围电路设计和优化。

  1 Buck变换器的工作原理

  Buck变换器又称为降压变换器,其基本的原理图如图1所示。

  

  如图1所示,Buck变换器主要包括:开关元件MOS管M1,二极管D1,电感L1,电容C1和反馈环路。如图,当M1导通时,V1与输出电压Vdc相等,D1反向截止。电流IM1=IL1流经电感L1,电流线性增加,经电容C1滤波,产生输出电压Vo和输出电流Io。R1和R2对Vo采样得到Vs,Vs与参考电压Vref比较得到信号Vea。如图1(a)所示,Vtr>Vea时,控制信号VG跳变为低电平,MOS管M1截止。此时,电感L1两端的电压极性反向,二极管D1承受正向偏压,并有电流ID1流过。若IL1

  

  2 BUCk变换器设计

  2.1LM3150功能介绍

  LM3150是一款简单易用,且可提供最高达12 A输出电流的简易降压电源控制器,采用eTSSOP-14封装。LM3150的工作输入电压范围为6~42 V,输出电压可按需要而调整,最低可达0.6 V,开关频率可调节至1MHz。LM3150控制器采用固定导通时间(COT)结构,具有特快的瞬态响应,无需外置环路补偿,有助于减少外置元件数和降低设计复杂性;可使用低等效串联电阻(ESR)输出电容器,从而降低了整体设计方案尺寸和输出电压纹波。LM3150内部结构如图3所示。

  

  2.2 LM3150电路优化设计

  WEBENCH Design Environments是独特而强大的软件工具,能在很短的几秒内提供定制照明、电源、时钟、滤波以及传感设计等。WEBEN CH简单易用的工具能帮助用户创建、模拟并优化符合独特规格的设计。与此同时,这些工具能让用户在将设计投入生产之前在设计、系统和供应链层面进行基于价值的权衡。

  开关电源设计的重要参数是效率、体积和成本,这几个方面不可能同时到达最优,而跟效率、成本和体积紧密相关的因素主要是:开关频率,电感,MOS管的开关损耗以及MOS管导通损耗。借助于WEBENCH软件可以完成芯片外围电路的优化选择。

  基于LM3150设计的BUCK型开关电源电路如图4所示。该电路能在输入直流电压范围为10~15 V,输出3.3 V,负载电流2 A,效率优先并可达到90%以上。

  2.2.1 开关频率和效率的选择

  借助于WEBENCH可以对开关电源电路设计的效率、成本、面积和开关频率进行优化,如表1所示是WEBENCH对LM3150应用电路在最高效率、最小面积和中间方案的对比结果。

  

  从表中可以看出,效率最高的方案开关频率最低但占用面积最多,最小面积方案效率最低但开关频率最高,本设计选择中间方案。

  2.2.2 Buck变换器电感的选择

  电感在开关电源中担任储能元件的角色,选择Buck变换器电感的主要依据是变换器输出电流的大小。充电时电感将电流转换为电磁能,放电时将电磁能转换为电流,升高开关频率可以有效地降低电感的体积,但开关频率又不能太高否则电感磁芯的高频损耗将增大。从上面的3个方案中得到的3种不同型号的电感如表2所示。

  

  从对比中可以看出,最高效率方案电感的直流电阻最小,功率损耗也最小,但因开关频率低导致电感占用面积最大,成本也最高,最小面积方案直流电阻稍大但电感量较低。本设计选择型号为:SRR1260-180M的电感,面积、直流电阻、电感值和功率损耗等参数较适中。

  2.2.3 Buck变换器MOS管的选择

  MOS管在开关电源中是作为电子开关使用的,工作中导通和截止状态交替进行。MOS管不是理想的开关,关断和导通是需要时间的,即存在开关损耗,开关频率越高,MOS管的开关损耗越大。

如表3所示,最高效率方案中开关频率最小,导通电阳最小,通流能力最强,但成本最大。本设计折中选择型号为型号CSD17507Q5A的MOS管,降低成本。

  3 仿真与测试

  选择好芯片的外围元件后,运用WEBENCH软件对LM3150 Buck型开关电源电路进行仿真与测试,电压、电流的输出波形如图5、6所示,输出效率随电流及输入电压Vin的变化如图7所示,开关电源总损耗随输入电压的变化如图8所示。从图中可看出电源效率随输入电压增加总体下降,总体损耗随输入电压增加总体在上升。

  

  测试及仿真结果表明,基于LM3150设计的Buck开关电源电路能够得到稳定的3.3 V电压,输出电流2 A,电源效率可以达到93%以上。

  4 结论

  本文研究了降压型变换器(Buck)的工作原理,借助于TI的WEBENCH电源设计工具完成基于LM3150设计的Buck开关电源电路的外围元件的参数选择,实现效率、成本、面积和开关频率的优化选择。通过仿真表明该电源转换效率高、带负载能力强,可以广泛应用于便携设备中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

-三款新器件助力提升工业设备的效率和功率密度-

关键字: SiC MOSFET 开关电源

在现代科技飞速发展的时代,电子产品已广泛渗透到人们生活和工业生产的各个角落。从日常使用的手机、电脑,到工业生产中的各类精密设备,都离不开稳定可靠的电源供应。而开关电源系统作为电子产品的核心供电部件,其性能与稳定性至关重要...

关键字: 开关电源 雷电 浪涌

开关电源凭借其体积小、重量轻、效率高的显著优势,在现代电子设备中广泛应用。然而,由于其工作在高频开关状态,不可避免地会产生电磁干扰(EMI)。这种干扰不仅会影响自身性能,还可能对周围其他电子设备的正常运行造成严重干扰。因...

关键字: 开关电源 电磁干扰 高频

PCB设计在EMI抑制中起着关键作用。合理的布局布线能够有效减少信号的电磁辐射和相互干扰。首先,应将功率电路和控制电路进行物理隔离,避免功率电路中的大电流、高电压信号对控制电路造成干扰。功率器件和电感等高频器件应尽量靠近...

关键字: LED 开关电源

开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。

关键字: 开关电源 电源

同步整流和非同步整流是开关电源中两种不同的整流方式,它们的主要区别在于续流回路中使用的元器件及其控制方式。

关键字: 电流 开关电源

在现代电子设备的庞大体系中,开关电源宛如一颗璀璨的明珠,凭借其高效、紧凑、灵活等诸多卓越特性,广泛应用于从日常电子消费品到复杂工业设备的各个领域。从我们爱不释手的智能手机、平板电脑,到功能强大的服务器、精密复杂的医疗设备...

关键字: 开关电源 电子设备 供电

反激式开关电源以其电路结构简单、易于实现等优势,在众多电子设备中得到广泛应用。在反激式开关电源的诸多参数中,输出整流器占空比是一个关键变量,它对电源的损耗有着重要影响。深入研究二者关系,对提升反激式开关电源的性能与效率意...

关键字: 反激式 开关电源 输出整流器

在开关电源实际布线时,首先要根据实际应用,仔细分清楚各种地线的种类,然后依据不同地线的特点和电路的需求选择合适的接地方式。不论采用何种接地方式,都必须始终遵守 “低阻抗,低噪声” 的原则,以确保接地的有效性,减少电磁干扰...

关键字: 布线 开关电源 电磁干扰

开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自...

关键字: 开关电源 电源
关闭