当前位置:首页 > 电源 > 电源
[导读]  UPS不问断电源是个特殊的设备,它既是电网的负载,又要给负载提供电源。所以它的EMC设计既要保证它不对电网造成电磁污染,又要保证它提供给负载的是个干净的电源。UPS本

  UPS不问断电源是个特殊的设备,它既是电网的负载,又要给负载提供电源。所以它的EMC设计既要保证它不对电网造成电磁污染,又要保证它提供给负载的是个干净的电源。UPS本身振荡电路就是一个干扰源。典型的UPS系统框图如图l所示。它的基本结构是一套将交流市电变为直流电的整流器、充电器和把直流电再变为交流电的逆变器,电池在交流正常供电对储存能量且维持在一个正常的充电电压上.一旦市电中断,蓄电池立即对逆变器供电 保证UPS交流输出。

  通常UPS电源分为在线式和后备式两种,在线式无论有无市电,都通过逆变器本身向负载供电,而通过逆变器的电源一般比较干净。因此我们只测在线式UPS电源对电网的干扰。后备式UPS电源则不同.有市电时,UPS不通过逆变器,它疑对电网电源进行稳压、滤波等,对负载有一定干扰。电网干扰、滤渡效果、自身的振荡源干扰抑制等都是要考虑的因素 在市电中断时.电池才对逆变器充电,并由UPS的逆变器对负载供电。因此对后备式UPS电源,既测对负载的干扰,又测对电网的干扰。下面就我们在EMC的传导干扰测试中遇到的几个问题进行阐述。

  我们知道,架空的输电线上不可避免地会检拾到各种高频辐射干扰,这种干扰往往以共模或差模形式出现,从而在电源线上产生传导干扰,通过正确的接地,可以抑制这种干扰,但只是在一定程度上的改善,因而可以加滤波器予以抑制(见测试曲线)。

  图2、图3给出了一UPS加滤波器前后的测试结果,这是一个具有代表性的测试结果。它为用Hp EMI自动测试系统测试的曲线,图2为不加滤波器的测试结果;图3为加滤波器的测试结果。从图中看到一条传导干扰的极限值曲线,从0.l5~0.5MHz极限值为79;从0.5~30MHz极限值为73。在极限值曲线以下的睡线为合格品,否则为不台格品。下面的一条为受试设备UPS的电源线传导干扰测试曲线。  从图2看出,在0.15~ 0.5MHz频率段内,测试曲线全部超差,为不合格。在8~10MHz处也有超差。从图3可以看出,受试设备曲线干扰值明显得到改善,超差点没有了.从该电磁兼容性传导干扰测试中可以看出,未加电源线滤波器的UPS其涮试结果不合格,经过选择合适的滤波器后,才通过了传导干扰测试。

  滤波器技术是抑制电气、电子设备传导干扰的主要手段之一,也是提高电子设备抗传导干扰能力的重要措施。它要求电磁干扰滤波器在阻带范围内应具有足够高的衰减量,把传导干扰电平降低到规定的范围,对传输的有用信号或电源工作电流的损耗应降到最低程度,电磁干扰滤波器与普通滤波器有所不同,电源系统的阻抗值与干扰源的阻抗值变化范围比较大,电源线上电磁干扰滤波器并非在阻抗匹配的状态下工作,电磁干扰频谱很宽,从低频到高频都存在电磁干扰能量,因此滤波器元件在这个频率范围内高额特性显得十分复杂,难以用元件的等效参数来表示滤波器的高频特性。由此看出,在UPS不问断电源装置中,只使用一般的电源滤波器是远远不能满足要求的,应当采用专门的EMI滤波器才能从根本上解决电磁干扰中的传导干扰.

  当然,从生产的角度来考虑,如果在UPS中我们一定要选用一般的滤波器,那么我们就要合理选择电容量的参数(UPS中常用的滤波方式为电容滤波)。因为在电路中,电容器起存能的作用,并联电容器C在电源供给的电压升高时.把部分能量储存起来。当电压降低时,再把能量释放出去,使负载电压平滑,即电容器C具有平滑作用,当C选择得过小时,就可能完不成这种作用。同时C对高频电流又起通路作用,从而起到滤波作用。所以C应台理的选择。

  从测试图4和图5中能很清楚地看出测试结果。不合格的为选用0.OμF的电容滤波,改进后选用0.1μF的电容滤波测试结果台格。滤波器的安装质量同样对衰减特性影响很大,只有把滤波器正确地安装到UPS不间断电源上,才能获得预期的衰减特性.  滤波器应安装在UPS的电源入口处,它的作用是用以阻止干扰能量通过电源电缆进入UPS,同时也阻止由UPS内部所产生的干扰馈入电源线。同时也要考虑滤波器抑制元件自身要进行良好的电磁屏蔽和接地处理。滤波器妁输入引线和输出引线不能交叉,否则引线问的耦合会降低滤波器特性,在输入引线和输出引线之间应有屏蔽层,否则输入与输出引线之间的耦合将导致滤波特性下降。最好把EM1滤波器的输入端和输出端隔离开来,从而使电磁耦合控制到最低限制。另外滤波器的安装还要考虑方向。

  通常EMI滤波器的电路是无源网络,具有其互易性,但从实际测试中了解到,有些滤波器输入输出端命名是针对干扰源而言的.有些命名是针对电路而言的。因此,在抑制干扰能力上就稍有差别 从图6可以清楚地看出,滤波器反接时.对低频干扰抑制减弱,从而使UPS系统内部干扰信号窜入电源线,而引起超差.经转向后,就合格了。

  通过上述分析 我们可以看出,抑制UPS的电磁干扰是一项既复杂又简单的工作,只要我们合理地选择、认真地思考、精心地安装就一定能够较好的解决好UPS的传导干扰问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭