当前位置:首页 > 电源 > 电源
[导读]1 特点及引脚功能 MAX6870/MAX6871 pdf,MAX6870/MAX6871 datasheet1.1 特点 ●6路(MAX6870)或4路(MAX6871)可编程输入电压检测器: 1个高电压输入(+1.25 v~+7.625 V或+2.5

1 特点及引脚功能 MAX6870/MAX6871 pdf,MAX6870/MAX6871 datasheet

1.1 特点

●6路(MAX6870)或4路(MAX6871)可编程输入电压检测器:
1个高电压输入(+1.25 v~+7.625 V或+2.5 V~+13.2V门限);
1个双极性电压输入(±1.25 V~±7.625 V或±2.5V~±15.25 V门限);
4路(MAX6870)或两路(MAX6871)正电压输入(+0.5 V~+3.05 V或+1 V~+5.5 V门限);
●4个通用逻辑输入;
●2个可编程看门狗定时器;
●8路(MAX6870)或五路(MAX6871)可编程输出:高有效、低有效、开漏极、弱上拉、推挽、电荷泵定时延迟范围为25μs~1600 ms;
●10位的内部ADC监视输入电压、检测器和两个辅助输入;
●状态控制和手动复位控制;
●内部1.25 V基准或外部基准输入;
●4 KB内部用户EEPROM;
●兼容I2C/SMBus的串行编程/通信接口;
●±l%的门限精度。

1.2 引脚功能

MAX6870/MAX6871采用32引脚薄型QFN无铅封装,各个引脚的功能见表1。


2 内部结构和工作原理

MAX6870和MAX6871具有6个输入,只要IN3-IN6中任意1个输入端的电压超过2.7 V的最小工作电压,或者INl上的电压超过4 V,电路就开始工作。6个输入都有2种门限电平可供选择,既可设置为2个都是欠压检测状态,也可设置为1个是过压检测状态,1个是欠压检测状态(即窗口检测器)。门限电平可以通过I2C来进行设置,并保存在配置EEPROM中。IN3-IN6的门限电平范围为O.5 V~5.5 V,根据选择的门限电平,步长可以是10mV或20 mV。INl可以检测的电压高达13.2 V,因此直接用来检测12 V(或稍低)的系统总线电压。

第二个输入IN2用来检测另一个较高的电压或负电压。

MAX6870内部多路复用器将6个检测器输入和2个辅助输入切换到精度为l%的10位ADC。然后由ADC把8个输入电压数字化后写入内部寄存器,通过I2C接口即可调用存储器内的值。2个辅助输入端可以用来改变2个附加输入的电压值,例如用于电流传感放大器的输入电压或温度传感器的输入电压等,在电流或温度高于一定值时,变换输出状态。

根据对内部EEPROM的编程改变编程逻辑阵列的连接设置,这6个检测器输入和4个公用输入{GPI)决定8个输出的状态。同样,通过把输入和输出进行混接,一些输出就可以由该器件的其他输出来控制。每个输出的延迟可独立设置并保存在电路内部的EEPROM中。

该器件的输出可设置为内上拉开漏结构或外上拉开漏结构,也可设置为推挽结构,输出端可在内部直接接到任何被检测的电源电压。所有输出既可以设为高电平有效,也可设为低电平有效。如上所述,MAX6870的可编程逻辑阵列可以进行很多种连接,可以用输入、输出的不同组合来驱动每个输出。

MAX6870内部还有1个电荷泵,允许OUTl~OUT4直接外接N沟道开关器件,无需其他电源。该器件还带2个看门狗定时器,看门狗的超时和起始延迟可自行设定。看门狗在复位操作后产生一个长时间的起始延迟,以供系统在这段时间内进行初始化、存储器数据的上传和软件的例行测试。

人工复位输入允许测试电路时手动控制所有输出。MAX6870还有配置寄存器和配置EEPROM。在开发阶段中,把要修改的数据写入配置寄存器,系统配置就会马上改变。如果需要保存这些修改,可以随后再写入配置EEPROM中。如果需要把配置EEPROM的数据重新调入,可以通过软启动或者硬启动的方法重新启动系统。在启动过程中,系统把EEPROM的数据下载到配置寄存器中。

4 MAX6870,MAX6871的应用

MAX6870/MAX6871的灵活性在于其可编程的内部寄存器,而寄存器内容又取决于EEPROM的内容,在系统上电或软启动后,配置寄存器信息从EEPROM下载。要给各个输入上电前,应首先通过I2C主器件给EEPROM写配置信号。正确的操作应该是先使用写块协议快速配置寄存器,然后读取数据以验证其正确性,最后通过写字协议给EEPROM写数据。寄存器映射地址如图l所示。从8100h到82ffh的512字节EEPROM可供用户保存软件或电路板的信息。

MAX6870的典型应用电路如图2所示,输出分别监控12 V,5 V,3.3 V,2.5 V,0.7 V,输出l和4间驱动n沟道开关器件,使用内部参考电压,辅助输入作为温度检测,通过I2C总线与微处理器通信,实现内部EEPROM的读写。

为了减小干扰的影响,在监测电压和地之间通过0.1 μF的电容器对高频噪声提供旁路,在ABP、DBP和地之间通过1μF电容器旁路,ABP、DBP为内部产生的电压,不应用于对外部电路供电。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭