当前位置:首页 > 电源 > 数字电源
[导读]摘要:在通信系统中,希尔伯特变换是被广泛应用的重要变换。为了实现数字解调,通常需要借助希尔伯特变换器对信号进行分解,利用Matlab设计希尔伯特变换器是一种最为快捷、有效的方法。通过具体的设计、仿真及对原


摘要:在通信系统中,希尔伯特变换是被广泛应用的重要变换。为了实现数字解调,通常需要借助希尔伯特变换器对信号进行分解,利用Matlab设计希尔伯特变换器是一种最为快捷、有效的方法。通过具体的设计、仿真及对原始信号和经过希尔伯特变换器输出延迟信号的比较,说明Matlab是一个在滤波器设计方面很有力的工具。
关键词:Matlab;Hilbert变换器;remez;FDATool工具

0 引言
    通信系统中,经常需要对一个信号进行正交分解,即分解为同相分量和正交分量。由于希尔伯特变换可以提供90°的相位变化而不影响频谱分量的幅度,即对信号进行希尔伯特变换就相当于对该信号进行正交移相,使它成为自身的正交对。因此,希尔伯特变换在通信领域获得了广泛应用。
    在传统的设计中,希尔伯特变换器可由一个FIR滤波器和一个时延模块实现,也可由一组滤波器对实现,而实现FIR型希尔伯特变换器的一个简单方法就是对原型低通滤波器作正弦/余弦变换。但是,无论哪种方法都需要通过计算对低通滤波器的系数进行转换,其计算繁琐且存在一定的误差。Matlab作为滤波器设计的基础软件,不仅可以快速有效地实现希尔伯特变换器的设计、分析仿真和最优化,而且可以直接计算出希尔伯特变换器的系数,加之Matlab具有强大的接口功能,为后续的设计提供了方便。

1 希尔伯特变换器的基本原理
    连续时间信号x(t)的希尔伯特变换定义为:
  
    由式(1)可得单位冲击响应h(t)=1/(πt),由于jh(t)=j/(πt)的傅里叶变换是符号函数sgn(w),所以希尔伯特变换器的频率特性为:
  
    信号x(t)的希尔伯特变换可以看成是信号x(t)通过一个幅度为1的全通滤波器输出,信号通过希尔伯特变换器后,其负频率成分作+90°的相移,而正频率成分作-90°的相移。
    这类滤波器要求滤波器的零频响应为0,若滤波器阶数为偶数,则还要求Nyquist频率(归一化频率为1)处的响应为0。即如果滤波器的阶数为偶数,那么增益在频率为0 Hz和fs/2处必须降为零,希尔伯特滤波器必须是一个带通滤波器。如果滤波器的阶数为奇数,那么增益在频率为0 Hz处必须降为零,希尔伯特滤波器必须是一个高通滤波器。

2 希尔伯特变换器的Matlab设计
2.1 直接程序法
    Matlab信号处理工具箱提供了firls函数和remez函数,它们的调用格式语法规则相同,只是优化算法不同,函数firls利用最小二乘法使期望的频率响应和实际的频率响应间的误差最小;函数remez实现Park-McClellan算法,这种算法利用remez交换算法和Che-byshev近似理论设计滤波器,使实际频率响应拟合期望频率响应达到最优。
    函数调用格式为b=remez(n,f,m,‘h’)或b=firIs(n,f,m,‘h’),其中,n为滤波器的阶数;f为滤波器期望频率特性的频率向量标准化频率,取值0~1,是递增向量,允许定义重复频点;m为滤波器期望频率特性的幅值向量,向量m和f必须同长度且为偶数;b为函数返回的滤波器系数,长度为n+1,本文将采用remez函数法。
    下面设计一个希尔伯特变换器,要求采样频率为2 000 Hz,通频带为50~950 Hz,滤波器阶数为60阶。实现程序如下:
    [!--empirenews.page--]
    设计的希尔伯特变换器的特性如图1,图2所示。


    从仿真结果可以观察到增益在0 Hz和1 000 Hz处降为零,即为带通滤波器;同时具有严格的线性相位特性,符合设计要求。在设计中如果特性不满足要求,原有的参数必须作相应的调整,在程序中只需对参数进行重新设定,就可以得到所需要的希尔伯特变换器。
2.2 利用FDATool工具设计法
    FDATool是Matlab信号处理工具箱专用的滤波器设计分析工具,操作简单、灵活,可以采用多种方法设计不同的滤波器,同时可以实现滤波器的最小阶数设计。在Matlab命令窗口输入FDATool后回车就会弹出FDATool界面。
    根据2.1中的设计实例,首先在Filter Type栏中选择Hilbert Transformer,在Design Method栏中选择Equiripple法,在filter order中选择60,在Frequencyand Magnitude Specifications中设置F=[50 950];M=[1 1];Fs=2 000,最后点击Design Filter,通过菜单选项Analysis可以在特性显示区看到滤波器的各种特性,如图3~图5所示。


    在幅频特性和相频特性满足要求的同时,由图3可知单位脉冲响应为奇对称,即h(n)=-h(N-n-1),也符合希尔伯特变换器的特性。若设计不满足要求,则可以直接在FDATool界面中改变参数,在设计满足要求后,还可以把希尔伯特变换器的系数导出为Matlab变量,文本文件或C语言头文件等,这为后续的设计提供方便。
[!--empirenews.page--]
3 希尔伯特变换器的效果验证
3.1 直接程序验证法
    对于所设计的希尔伯特变换器,频率为10 Hz的振动作为输入信号,采样频率为100 Hz,验证对应的数据点是否满足相位相差90°的特点,主要实现程序如下:
   
   
    由图6可知,该希尔伯特变换器对阻带和通带波纹进行了控制,输出信号的相位比输入信号的相位前移了90°,符合希尔伯特变换的性质。如若把输入信号的频率变为-10Hz,则输出信号较之输入信号会后移90°,如图7所示。通过验证可知,该希尔伯特变换器实现了π/2移相。


3.2 Simulink仿真法
    利用Matlab提供的Simulink工具对该希尔伯特变换器进行仿真,输入信号以3.1节中的要求为例,仿真系统如图8所示,在建立仿真系统时,注意对所选择的模块进行相应的参数设计。仿真结果如图9,图10所示。



4 结语
    在Matlab平台上,采用直接程序法和FDATool工具法均可以快捷有效地完成希尔伯特变换器的设计,可以随时对比设计要求和希尔伯特变换器的特性,以使设计达到最优化。由于Matlab具有强大的接口功能,设计的结果可以很方便地移植到DSP,FPGA等器件中。在实际使用中,只需按要求修改参数,即可实现不同的希尔伯特变换器,实用性较强。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭