当前位置:首页 > 电源 > 数字电源
[导读]引言  随着多媒体和网络技术的发展,数字图像大信息量的特点对图像压缩技术的要求越来越高,因此,专用高速数字信息处理技术成为发展的方向。TI推出的C5000系列DSP将数字信号处理器使信号处理系统的研究重点又回到

引言

  随着多媒体和网络技术的发展,数字图像大信息量的特点对图像压缩技术的要求越来越高,因此,专用高速数字信息处理技术成为发展的方向。TI推出的C5000系列DSP将数字信号处理器使信号处理系统的研究重点又回到软件算法上。在压缩算法研究方面,DCT、小波等多个算法因为其高可靠性和高效性也越来越受到青睐。
 

        系统硬件设计

  TMS320C5409作为主处理器的可行性分析

  TMS320C5409时钟频率为100MHz,性价比极高。采用围绕1组程序总线、3组数据总线和4组地址总线建立的改进型哈佛结构,取址和读数可同时进行。有独立的硬件乘法器,有利于实现优化卷积、数字滤波、FFT、矩阵运算等算法中的大量重复乘法运算。具有循环寻址、位倒序等特殊指令,这些指令使FFT、卷积等运算中的寻址、排序及计算速度大大提高。有一组或多组独立的DMA总线,与CPU的程序、数据总线并行工作。

  

  在本系统中,TMS320C5409作为主处理器,任务是实现JPEG压缩编码。

  通过分析不难得到,当处理一帧大小为640×480的图像时,作JPEG压缩编码所需要的时间为:T=62×10(ns)×640×480=0.19866s,当所处理的图像分辨率更小时,则压缩每帧所花的时间更少,这对于应用在对实时性要求不是很高的场合是完全可行的。

  

 

  硬件设计框图

  图1是基于TMS320C5409的图像处理系统结构图。C5409为中央处理器,SRAM为DSP片外扩展数据存储器,EEPROM为脱机工作时的程序存储器,用于存储系统的引导程序和其它应用程序,A/D转换部分负责把转换为数字信号的图像存入帧存储器中。地址译码、图像采集系统控制电路产生本系统各部分的地址译码信号,使之映射到不同的地址区域,并控制ADC进行图像采集,这部分由CPLD控制;图像采集芯片的寄存器控制由51单片机完成。

  存储空间的扩展方案

  经过A/D转换的原始图像数据是非常大的,TMS320C5409的内部仅有32KB的RAM和16KB的ROM,不能满足需要,因此,必须扩展存储器来存放原始图像数据和应用程序。本文考虑外接64KB的RAM和512KB的Flash,RAM使用Cypress公司的CY7C1021V33,Flash采用SST公司的SST39VF512。由于C5409的数据空间仅为64KB,因此采用内存页扩展技术。C5409的扩展输出口1Q和2Q作为扩展内存的页选择信号。用C5409的A15引脚和XF引脚通过3/8译码器来控制扩展存储器片选信号的产生,当A15=0时,选择片内RAM;当A15=1,XF=0时选择片外SRAM;当A15=1,XF=1时选择片外Flash;存储器的扩展如图2所示。将外部扩展RAM的64KB中的48KB用于存放原始图像数据,16KB用于存放压缩后的图像和程序以及暂存的数据。

  

 

  DSP芯片电源电路设计

  电源设计中需要考虑的主要问题是功率和散热。功率要求:电流的消耗主要取决于器件的激活度,即CPU的激活度,外设功耗主要取决于正在工作的外设及其速度,与CPU相比,外设功耗是比较小的。以TMS320C5409为例,进行FFT运算时,需要的电源电流最大。因此在设计电源时,必须考虑在电源电流和实际需用电流之间留有一定裕量,因为峰值电流会更大,裕量至少是20%。

  C5409采用了双电源供电机制,工作电压为3.3V和1.8V。其中,1.8V主要为DSP的内部逻辑提供电压,包括CPU和其它所有外设逻辑。外部接口引脚采用3.3V电压。本系统的电源采用了TI公司的两路输出电源芯片TPS73HD318,它是一种双输出稳压器。输出电压一路为3.3V、一路为1.8V,每路电源的最大输出电流为750mA。

  JPEG图像压缩算法

  JPEG算法的优化

  尽管JPEG基本系统能够对图像进行低压缩比压缩,但是DCT和IDCT在软件实现的过程中,是最耗费时间的运算,而且,由于没有考虑图像本身的频谱特性,JPEG量化表对于所有图像压缩并不一定最优。采用快速DCT算法可提高软件的速度,增强软件的实时性。同时,根据图像本身的频谱特性,自适应改进JPEG推荐的量化表。

  快速DET算法

  如果将一幅图像分成许多8×8的小块后直接进行2D—DCT变换,运算量将会十分巨大。因此,需要将8×8二维DCT变换转换成两次8点的一维DCT复合运算。具体做法是对每一个8×8块先做列方向上的DCT变换,得到一个中间矩阵,再对该矩阵各行进行DCT变换。可以看到,8×8矩阵的2维DCT可以转换成16次一维8点DCT。

  目前,很多针对一维DCT运算的DCT快速算法已经提出。其中,Loeffler算法所需要的计算量最小。Loeffler算法将8点一维DCT运算分为4级,由于各级之间的输入/输出存在依存关系,4级操作必须串行进行,而各级内部的运算可并行处理。

  流程图中有三种运算因子:蝶形因子、旋转因子和倍乘因子,分别如图3中的a,b,c所示。蝶形因子的运算关系为:

  

 

  D0=I0+I1

  O1=I0-I1

  需要2次加法完成,倍乘因子的输入/输出关系比较简单:,只需1次乘法,旋转因子的运算关系为:

  

[!--empirenews.page--]需4次乘法、2次加法完成。如果对其输入/输出关系式做以下变换:

 

  

 

  只需要3次乘法、3次加法。其中,

和差都是已知系数,可通过查表获得。

 

  由此计算可知,一个8点DCT的Loeffler算法共需要11次乘法和29次加法。从DSP汇编语言编程的角度来看,一个代数运算应包括取操作数、运算、存操作数三个步骤。因此,该算法大约需要120条指令。C5409的运算能力很强,支持单周期加/减法和单周期乘法运算,并且能够在单周期内完成两个16位数的加/减法运算,再加上DSP中有3组数据总线,因而可以利用长操作数(32位)进行长字运算。在长字指令中,给出的地址存取的总是高16位操作数,因而只需5条长字指令即可计算2个蝶形运算。加上采取其它优化措施,大约需90条指令完成Loeffler算法。

  虽然Loeffler算法运算量最小,但是运用于本文系统并不是最优。因为该算法是为高级语言设计,没有利用汇编语言的特点和DSP硬件的特点。本文提出了基于DSP乘法累加单元的DCT快速算法。

  DSP的乘法累加单元能在单周期内完成一次乘法和一次累加运算。如汇编指令运用于DCT运算,将大大简化程序的复杂度并减少计算时间。具体算法如下,利用蝶形运算:

  

 

  从上面表达式可以看出,y(0)-y(7)都是乘法累加运算,而s0-s7可由x(0)一x(7)经过蝶形运算得到,因此,DCT算法由原来的4级运算变成两级,即第一级蝶形运算和第二级乘法累加运算,第一级蝶形运算共要10+4=14(10次计算操作和4次辅助操作)条指令,第二级运算中,每个输出要4+1+1=6条指令(做4次乘法累加运算、1次读取操作和1次存储操作),一共48条指令,这样,计算一个8点DCT要62条指令,大大缩减了运算时间,提高了CPU的工作效率,增强系统的实时性。

  量化运算优化

  本文提出了基于实际情况的自适应量化方法,即量化阶段采用二次计算的方法,其算法主要分为两步:(1)对变换后的图像系数进行自适应处理;(2)构造新的量化表。具体方法如下:

  

 

  首先求出亮度分量和两个色度分量在频域中所有8×8子块的63个交流系数绝对值的平均值P(u,v),其中,u,v=0…7为位置信息。接下来求出163个交流系数平均值中的最大值,Z1(u,v)=MAX[P1(u,v)],最后将63个交流系数平均值进行归一化处理,同时加入频率位置信息,分别得出亮度和色度量化表中63个交流分量的矫正系数,计算过程为:

  

 

  由此可以得到量化表的矫正式Qpl(u,v)=Q1(u,v)/X1(u,v),对JPEG量化表进行矫正。

  将上述矫正后的量化表作为最终的量化表,对图像进行标准JPEG压缩,形成完全符合JPEG格式的压缩文件。本算法的解码过程与标准.JPEG解码过程完全相同,可以看出它也是标准.IPEG编码过程的逆过程。

  实验结果

  快速DCT运算

  将本文提出的算法、Loeffler的DSP优化算法和纯Loeffler算法分别进行测试。结果见表1,可以看到本文算法较Loeffler的DSP优化算法大约节省了1/4的时间,较纯Loeffler算法大约节省了一半时间,其效果是十分明显的。

  自适应量化

  对自适应量化器进行仿真。本文采用中等复杂度的标准图像作为测试图,与基本JPEG系统进行性能比较(基于峰值信噪比(PSNR))。只将JPEG标准方法中的量化表更改为修正的量化表,就可以在同等压缩比下,提高恢复图像的质量。表2为不同压缩比下,采用JPEG量化表和自适应量化表两种方法的峰值信噪比。从压缩比和峰值信噪比的对比结果可看出,自适应量化JPEG方法的压缩比略高于标准JPEG方法。

  结语

  该系统的优点是提高了JPEG的运行速度,增强了图像的压缩率和质量,并且易于硬件实现。这一方案可应用于需要对视频图像进行实时采集、压缩及存储的绝大部分场合。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

太阳能供电应用系统的设计需要考虑多个方面,包括太阳能电池板、储能装置、控制模块等。本文将介绍一种基于太阳能供电的应用系统设计方法,并从这几个方面进行详细阐述。

关键字: 太阳能 系统设计

北京2023年8月15日 /美通社/ -- 日前,在第五届OCP China Day 2023(开放计算中国技术峰会)上,浪潮信息正式推出融合架构3.0原型系统,以开创性的系统架构设计实现了计算资源、存储资源、...

关键字: 系统设计 内存 软件定义 数据中心

北京2023年8月7日 /美通社/ -- 随着大模型智能水平的提升,AIGC所需要的算力在不断增长。大模型的参数量超过千亿,甚至突破万亿级别,预计智算中心将迎来更快发展。IDC预测,2022-2026年,全球AI计算市场...

关键字: CHINA 数据中心 AI 系统设计

无论温度怎么变化始终UCQ1=UCQ2,电路以两只管子集电极电位差作为输出,就克服了温漂 当u11=u12(共模信号)T1管和T2管所产生的电流变化相等;因此集电极电位的变化也相等。

关键字: 差分放大器 系统设计 电极电位

大家好,我是鲏。认识我的朋友都知道,我是一个实践派,相比研究枯燥的理论知识,我更喜欢做自己想做的项目,用技术来实现自己的想法的感觉真的很棒。所以从大学期间一直到现在,除了工作中的项目外,我依然保持着自己做项目的习惯,有坚...

关键字: 系统设计 技术选型 需求分析

(全球TMT2022年8月30日讯)近日,在2022英特尔中国数据中心合作伙伴技术峰会上,英特尔与浪潮信息等产业生态伙伴联合发布了《绿色数据中心创新实践 -- 冷板液冷系统设计参考》白皮书,分享冷板液冷技术关键部件的最...

关键字: 系统设计 英特尔 数据中心 生态系统

北京2022年8月30日 /美通社/ -- 近日,在2022英特尔中国数据中心合作伙伴技术峰会上,英特尔与浪潮信息等产业生态伙伴联合发布了《绿色数据中心创新实践 -- 冷板液冷系统设计参考》白皮书,分享冷板液冷技术关键部...

关键字: 系统设计 英特尔 数据中心 电量

摘要:近年来,受人类活动的影响,各大水域的水质污染问题越来越严重,大部分水资源受到严重污染,水质处理问题亟需解决。分析水体污染情况对改进水质有着重要意义,目前水质监测主要采用人工或无人船的方式。人工监测方式工作量大,影响...

关键字: 水质监测 无人机 系统设计

摘要:根据饶平县高堂水闸重建工程建设实际需求,对高堂水闸运行管理进行实时在线式监控与监测,通过闸门控制、视频监控、水情测报、安全监测和网络通信等系统的设计,为高堂水闸的水工建筑物安全、防洪调度和自动化管理提供技术支持,以...

关键字: 管理信息系统 水利工程 系统设计

湖州2022年7月26日 /美通社/ -- 近日,浙江省科技创新大会在浙江省人民大会堂隆重举行。大会正式颁布2021年度浙江省科学技术进步奖,隆重表彰为浙江科技创新事业和经济社会发展做出突出贡献的科技工作者及团队。...

关键字: 电梯 检测技术 系统设计 零部件
关闭
关闭