当前位置:首页 > 电源 > 数字电源
[导读]触摸屏控制器制造商经常拿各种规格和标准来使自己的产品与众不同。其中最常提到的就是信噪比(SNR)。然而,当噪声存在时,即使数字上看起来不错,也并不意味着SNR就是一个很好的系统性能指标。这篇文章将讨论什么是信

触摸屏控制器制造商经常拿各种规格和标准来使自己的产品与众不同。其中最常提到的就是信噪比(SNR)。然而,当噪声存在时,即使数字上看起来不错,也并不意味着SNR就是一个很好的系统性能指标。这篇文章将讨论什么是信噪比,它是如何计算的,它对系统性能意味着什么,是否能很好的度量触摸性能。

什么是信噪比?

信噪比是触摸屏控制器的性能指标,现在已经作为行业标准被大家接受。信噪比的问题是没有任何行业标准的测量、计算、报告方法,尤其是在某些典型系统中,噪声具有高可变性的情况下,例如移动电话。这两个部分(信号和噪声)的测量和计算很大程度上依赖于被测装置(DUT),有代表性的是移动电话。值得注意的是,虽然信噪比作为性能衡量已被广泛接受,行业专家明白,大多数市场宣扬的高信噪比放到实际应用中并不能保证。此外,在噪声环境下,提供高信噪比也不能完全符合其功能规范。

电容式触摸屏中,信噪比中信号就是加上测量到的手指电容后的实际电容的变化量。手指电容取决于传感器覆盖物厚度、手指大小,DUT到地的寄生电容,以及传感器模式。噪声成分依赖于内部控制器噪声和外部噪声源,本文将会就这些方面进行讨论。

投射式电容触摸屏触摸技术已应用在很多新型智能手机中,触摸传感器使用时都会遇到噪声。噪声从显示器(可能是LCD或AMOLED)耦合到触摸传感器,距离越近噪声越大。不像模拟显示那样同步,这类LCD噪声通常是尖峰噪声。USB充电器噪声通常也是也尖峰噪声。它也是最容易变化的,因为在每个设备中AC/DC变压器的结构和组件是不同的。

第三方低成本的充电器特别容易出现这种噪声尖峰。因此,当触摸控制器没有像cypressChargerArmor那样的噪声抑制技术时,USB充电器是OEM厂商最头疼的事情。当所有这些外部噪声存在时,我们期望触摸控制器不会错误报告手指触摸或手指位置。他们并不能归类于普通,或高斯,或分布式噪声。这就给工程师和营销人员带来一个问题,要区分出没有噪声时ADC的信噪比。

在众多的测量条件下,信噪比一直能够作为度量标准不能不说是一个奇迹。此外,信噪比不能预测最重要和量化的触摸屏噪声相关参数:抖动(也称为无噪声分辨率)和错误触摸报告。幸运的是,有一个信噪比测量技术能预测非高斯噪声存在时的抖动。

噪声如何影响触摸屏系统

不好的信噪比会影响系统的鲁棒性,造成假触摸和位置跳动。手指靠近触摸屏时会干扰相交的两个透明电极的边缘电场。这种电容称为互电容。这就改变了传感器的电容。交叉点发生在发射和接收电极直角交叉处。在手机触摸屏上有好几百个这样的交叉点。触摸屏控制器测量所有交叉点电容的变化,并把测量数据转换成量化的原始数据。通过测量每个交叉点,而不是整个电极,控制器就能够创建一个二维的触摸屏传感器电容图表。

如果在手指附近交叉点发生一个大的噪声尖峰,那么在位置计算算法就会添加一个错误标志。然后该算法转换原始数据到坐标;根据噪声峰值大小,手指位置报告的坐标可能是抖动,当手指静止,可能在两坐标间交替。当智能手机使用触摸屏接口,插到USB充电器时,某些无意识的输入或选择可能会出现这些情况。

我们可以断定,在缺少规范化测量方法时,信噪比可以作为性能度量,但并不完美。这里有定义好了的性能指标,测量步骤,计算方法,触摸屏控制器供应商(见赛普拉斯规范001-49389)和移动设备OEM可以使用来量化触摸性能。这些规范是必要的,可以保证可重复的试验结果,验证触摸屏性能,减少触摸屏测试硬件和固件变化。

典型的性能测试除了触摸屏硬件和控制器接口外还需要金属手指模拟器,夹具,示波器,函数发生器,自动机械。例如,标准的抖动测量过程分为七步,记录手指位置坐标上的时间噪声。这里的测量表明有多大运动,多少距离,我们会期望是不动的手指。这是一个相对简单的参数测量,它直接并立即在用户界面产生影响。相比之下,信噪比的影响在触摸屏性能上就不那么直接了。即使在噪声环境下,数字滤波器和位置计算算法也能够去除抖动,就是降低了信噪比值(作为一种性能度量)。把信噪比作为一个性能指标是不可取的,因为它不能最终给你一个真正意义上的系统性能。

本文是想告诉大家,不要以点见面,以偏概全,信噪比并不能告诉我们系统是否很好地响应触摸。这就是为什么触摸控制器领先制造商,如赛普拉斯TrueTouch,有一套测试和测量方法来评估新的触摸屏设计的性能。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

石墨电极分类:普通功率石墨电极(RP);高功率石墨电极(HP);准超高功率石墨电极(SHP);超高功率石墨电极(UHP)。

关键字: 石墨 电极 高功率石墨

【2023 年 11 月 27日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布推出PSoC™ 4000T系列微控制器(MCU)。这一全新的MCU系列以出色的信噪比、防水特...

关键字: 微控制器 信噪比 物联网

电容式触摸屏是是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。

关键字: 电容式触摸屏 ITO涂层 电极

上海2022年11月11日 /美通社/ -- 第五届中国国际进口博览会(以下简称"进博会")正式落幕。作为全球领先的医疗科技公司,波士顿科学(NYSE: BSX) 连续第四年参展,集中展示了近年来受益...

关键字: BSP OS 医疗技术 电极

据业内信息报道,近日斯科尔科沃科技研究所的科学家发现了一种调整其微观结构以提高能量密度的方法,通过调整合成程序来改变两种常见的NMC的构型,从而实现能量密度的提升。

关键字: 动力电池 电极 能量密度

波士顿科学旗下的神经射频消融产品"麒麟"(Unified Electrode)系列一次性使用注射射频电极在华正式上市,用于慢性疼痛及周围神经性病变相关疾病的疼痛治疗。(医药健闻)...

关键字: 射频 电极 麒麟 UNIFIED

庄信万丰(Johnson Matthey)已开始在中国进行燃料电池回收。庄信万丰工厂位于江苏省张家港市,专注于提炼和回收膜电极(MEA)铂族金属成分,膜电极是汽车燃料电池的一个关键组件,来源于全球领先燃料电池堆栈技术提供...

关键字: 燃料电池 电极 JOHNSON 金属

摘要:目前很多地方没有带电设备可供验电器检测,并且在使用工频变压器进行验电器检测时,存在着工频电压发生器体积庞大、携带不便,而且不能产生肉眼可供观察的现象验证发生器本身工作正常的技术问题。鉴于此,设计了一种验电器检测装置...

关键字: 验电器 逆变升压模块 电极

摘要:为了提取微弱红外光电信号,通过理论计算和试验验证的方法,得到了偏置电路的最佳匹配,并利用噪声的随机特性,采用多路并联相加的电路形式,在采用最佳偏置匹配的基础上,进一步将信噪比提高,从而设计出能满足微弱红外光电信号提...

关键字: 前置放大器 光导型红外传感器 噪声 信噪比

热释电传感器是一种传感器,别称人体红外传感器,用于生活的防盗报警、来客告知等,原理是将释放电荷经放大器转为电压输出。

关键字: 热释电 传感器 电极 红外辐射
关闭
关闭