当前位置:首页 > 电源 > 数字电源
[导读]AT89C51(与MCS-51兼容)单片机的串行口在方式0工作状态下,使用移位寄存器芯片可以扩展多个8位并行I/O口。在LED点阵显示屏应用系统中,一般都采用数据同步移位输出方式,并使用移位寄存器芯片(如74LS595)扩展并行

AT89C51(与MCS-51兼容)单片机的串行口在方式0工作状态下,使用移位寄存器芯片可以扩展多个8位并行I/O口。在LED点阵显示屏应用系统中,一般都采用数据同步移位输出方式,并使用移位寄存器芯片(如74LS595)扩展并行I/O口驱动LED点阵显示。LED 点阵显示采用扫描方式,为不产生闪烁感,每秒需要传送50屏点阵显示数据,因此有大量的数据要通过同步移位的方式送到显示驱动电路部分,这就要求单片机能够快速地输出数据。AT89C51单片机的串行口在方式0工作状态下,数据以fosc/12的波特率输出,1个字节数据写入SBUF后,需检查中断标志位 TI是否为“1”并清“0”TI或延时几个机器周期后才能继续写入了一个数据,输出速度慢。在LED点阵显示屏应用系统中,系统与PC机之间的通讯需要使用单片机的串行口,显示数据的同步移位输出口只有另外扩展。本文介绍的高速串行同步移位输出口(以下简称扩展串行口)电路,采用模块化设计,给出基于 TTL和PLD两种电路的实现方案,波特率提高到fosc,数据输出不需要等待或延时。

一、扩展串行口与单片机的连接

扩展串行口电路框图如图1所示。与并行存储器芯片类似,扩展串行口被视为一个外部RAM地址单元,直接挂接在AT89C51的外部数据总线上,D0~D7为数据线,CE为片选信号,WE为写脉冲信号,也是扩展串行口的输出控制信号。AT89C51 外接晶体振荡器的振荡信号经二个与非门整形后为扩展串行口提供时钟脉冲XTAL2。DAT和CLK分别是扩展串行口的数据输出端和同步移位脉冲输出端。

二、操作指令

假设AT89C51分配给扩展串行口的地址是0000H,使用MOVX@DPTR,A或MOVX@R0,A指令将数据写入扩展串行口并移位数据。下面的程序段将内部RAM数据区首址为30H的32字节数据送扩展串行口同步移位输出:
MOV P2,#00H ;设置扩展串行口地址高8位
MOV R1,#30H ;设置内部RAM数据区首址
MOV R7,#32 ;输出字节个数
LOOP:MOV A,@R1 ;从内部RAM数据区读入1字节
INC R1 ;指向内部RAM数据区下一个地址单元
MOVX @R0,A ;数据送扩展串行口输出
DJNZ R7,LOOP ;32字节未送完继续
RET

三、基于TTL电路的设计方案和工作原理

图2是用TTL电路实现的扩展串行口电路。74LS74是有预置、清零功能的双上升沿D触发器,D1~D5构成8脉冲发生器(计数器原理),74LS165是8位并行输入串行输出移位寄存器。CPU执行MOVX@R0,A(或MOVX @DPTR,A)指令时,数据被锁存在74LS165中。产生8脉冲信号的时序如图3所示。图3中,Q0~Q5分别是6个D触发器的输出端,扩展串行口片选有效(CE=0),写脉冲WE到来时,WR=0,在时钟脉冲XTAL2的上升沿触发器D0的输出Q0=0,Q0复位Q5,使Q5=1;写脉冲结束后,WR=1,则WR·Q5=1,计数器的复位端无效,计数器开始计数,同时在Q1端输出方波脉冲;第8个脉冲结束后,Q5=1,则WR·Q5=0,计数器被复位,停止计数,等待下一个写脉冲。Q1端输出的8个脉冲作为同步移位脉冲接74LS165的CLK2(15脚),同时也是扩展串行输出口的同步移位脉冲输出信号:由MOVX指令锁存在74LS165中的数据在同步移位脉冲(CLK)的作用下,从扩展串行输出口的数据端(DAT)输出。

[!--empirenews.page--]

四、基于PLD电路的设计方案

用可编程门阵列器件设计电路,可使电路简化,器件数量减少。图2中虚线框内的8脉冲发生器电路用 1片GAL16V8D就可以实现,如图4所示。XTAL2是扩展串行口时钟脉冲输入信号,WR是片选有效情况下的写脉冲信号,Q1是8脉冲输出端。根据图 3所示时序图写出Q1~Q5的逻辑表达式,下面是GAL16V8D芯片的逻辑设计示例。

AFT16V8D
NAME:ED13_U00
AUTHOR:FUHAO
DATE:04.15.1999
;1 2 3 4 5 6 7 8 9 10(pin)
CLK WR NC NC NC NC NC NC NC GND
;11 12 13 14 15 16 17 18 19 20(pin)
OE Q1 Q2 Q3 Q4 Q5 NC NC NC VCC
Q1:=/Q1*WR*/Q5
Q2:=/Q2*Q1*WR*/Q5
+Q2*/Q1*WR*/Q5
Q3:=/Q3*Q2*Q1*WR*/Q5
+Q3*/Q2*WR*/Q5
+Q3*/Q2*WR*/Q5
Q4:=/Q4*Q3*Q2*Q1*WR*/Q5
+Q4*/Q3*WR*/Q5
+Q4*/Q2*WR*/Q5
+Q4*/Q1*WR*/Q5
Q5:=/Q5*Q4*Q3*Q2*Q1*WR
+Q5*/Q4*WR
+Q5*/Q3*WR
+Q5*/Q2*WR
+Q5*/Q1*WR
DESCRIPTION
 
结束语

本文介绍的单片机扩展高速串行同步移位输出口的方法,以及给出的基于TTL和PLD两种电路的实现方案,在LED点阵显示屏系统中都已得到成功的应用。扩展串行口采用模块化设计,很容易移植到其他应用系统中。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭