当前位置:首页 > 电源 > 数字电源
[导读]热磁子散热材料理论  一、问题的提出  现有LED装配结构问题:  1.基本上是1WLED/珠,无紧固装置,需用低导热系数但粘接力很大的硅胶固定。不能将LED热迅速传到铝基PCB板上。  2.1W/珠LED需用数十--百珠以上,

热磁子散热材料理论

  一、问题的提出

  现有LED装配结构问题:

  1.基本上是1WLED/珠,无紧固装置,需用低导热系数但粘接力很大的硅胶固定。不能将LED热迅速传到铝基PCB板上。

  2.1W/珠LED需用数十--百珠以上,铝基板面积很大,用1.5—4W/M.K导热胶与散热器粘接,导热能力不足。

  而且因铝基PCB面积庞大,变形是必然的,接触面因而减小,造成接触热阻增大。

  以上几种原因,形成LED热流不畅,热积累不能释效放,热阻力增大,温升升高。

  

 

  图一不良LED装配图件

  二、热磁子散热材料理论

  从晶格格波的声子理论可知,热传导过程------声子从高浓度区域到低浓度区域的扩散过程。是以非简谐振动方式运动的。传热仅涉及物质内部碰撞或扩散的速度。因此,从一定程度上,散热快的物质,传热速度不一定快,传热快的物质,散热速度不一定快。

  

 

  图二 热声子在材料内部传热过程图

  物质散热表征的本质指标是比热容;

  比热容指标本质是物质晶体以简谐振动的热运动方式运动。这种运动方式具有波的形式,称为晶格波,是在弹性范围内原子的不断交替聚拢与分离。比热越大,热发射强度越大,晶格振动是量子化的。

  固体热容由两部分组成:一部分来自晶格振动的贡献,称为晶格热容;另一部分来自电子运动的贡献,称为电子热容。除非在极低温度下,电子热容是很小的(常温下只有晶格热容的1%)。这里我们只讨论晶格热容。

  散热不仅涉及到物质内部波的运动,而且还涉及到与介质热交换的波的频率。更丰富的频域电磁波。

  根据以上原理,我们利用纯铝为基材,采用量子调控技术,加入热运动简谐振动频率高的声子晶体材料,并加入扼制非筒谐运动的声子材料,制成比热容高,热平衡速度快,与空气热交换频率高的高效散热材料。

  

 

  Debye(1912)修正了原子是独立谐振子的概念,而考虑晶格的集体振动模式,他假设晶体是连续弹性介质,原子的热运动以弹性波的形式发生,每一个弹性波振动模式等价于一个谐振子,能量是量子化的,并规定了一个 弹性波频率上限 ,称之为德拜频率。

  Einstein 模型和 Debye 模型都是对晶格振动的一种近似描述,它使我们对晶格振动的基本特征有了更加清晰的认识:在简谐近似下,可以用相互独立简谐波来表述;这些简谐波能量是量子化的。描述晶体原子运动简谐波的能量量子叫声子。根据以上原理,我们利用纯铝为基材,采用量子调控技术,加入热运动简谐振动频率高的声子材料,并加入扼制非筒谐运动的声子材料,制成比热容高,热平衡速度快,与空气热交换频率高的高效散热材料。

  因有声子的高频运动,产生了交变电磁波(磁子),热能转换成电磁能向空间辐射。最明显的是用电子测温汁测温,因表面有高频交变磁场,测温测不准。必须使用频域很宽的热探头或使用远红外温度测试仪测温。

  根据以上原理,我们利用纯铝为基材,采用量子调控技术,加入热运动简谐振动频率高的声子晶体材料,并加入扼制非筒谐运动的声子材料,制成比热容高,热平衡速度快,与空气热交换频率高的高效散热材料。在组方中,加入温度范围更宽的热电波转换材料,用来将热转换成频域更宽的电磁波向空间发射。

  也可以用技术手段加速热流运动的频率,就象加速电流运动频率一样,进行主动散热[!--empirenews.page--]

高频磁子散热铝的基本散热原理:利用热运动简谐振动频率高的声子材料,并加入扼制非筒谐运动的声子材料,制成比热容高,热平衡速度快,与空气热交换频率高的高效散热材料。热能转换成电磁能(磁子)向空间辐射散热。

  热能转换电磁波(磁子)频域宽,热上升平衡时间与断热下降平衡时间短,为5-6分钟,而传统铝为30-40分钟。最具优势的是:因散热速度快,靠近热源端温度低于远离物源端5-10℃。

  

 

  图四 热磁子复合材料热均匀传递图

  三小结:

  LED散热是声子,热子,光子,磁子热能量量子(准粒子)综合运动的结果。其中声子是以准谐振方式(波的形式)进行散热主运动,是在物质的内部。是典型微运动。声子运动频率越快,与介质交换的速度越快,散热效率越高。

  爱因斯坦、德拜只研究了物质内部热动规律,而没有触及物质内部热与外部热作什么样的热能量交换。

  提高物质散热运动效率的方法:

  1.运用声子运动频率快的物质。

  2.运动主动技术手段,使声子可以主动加快运动,就象电磁运动加快电流运动频率一样方便。

  热子是热能近距离向空间(或介质)幅射散热的主要方式,其表现形式为宏观,是声子将其运动到表面区域,更多的热能积聚在物质表面。在传热表面附着热发射率高物质,能加速热子向空间发射。提高其散热效率需运用宏观热学方法来解决。这里不展开。

  光子是热能转化成不可见光波向空间发射散热,可以是远距离的。可以用技术手段来丰富热子转化成光子的频域,加大散热效率。

  磁子散热原理,由于热声子运动频率加快,引发除光子以外的电磁运动,也就是热能转成电磁波向空间幅射。

  其表现捕捉到现象是热电偶测温偏离,原因是带宽不够。

  进一步研究:各种物质散热声子运动的频率,可供选用。

  进一步研究:那一种晶体结构,简谐声子运动频率快。

  热磁子散热材料指标:

  热发射率96%

  热磁幅射率98%

  热吸收率<5%

  比热容0.98 J/(g.K)

  热导率220W/M.K

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭