当前位置:首页 > 电源 > 数字电源
[导读]SoC(Systemon Chip,片上系统)以其能提高产品性能、缩小产品体积等优点,逐渐成为嵌入式系统发展的主流趋势。SOPC(System On a Programmable Chip,可编程片上系统)利用可编程逻辑器件来实现SoC,具有设计方式灵活,可裁减

SoC(Systemon Chip,片上系统)以其能提高产品性能、缩小产品体积等优点,逐渐成为嵌入式系统发展的主流趋势。SOPC(System On a Programmable Chip,可编程片上系统)利用可编程逻辑器件来实现SoC,具有设计方式灵活,可裁减、可扩充、可升级,并具备软硬件在系统可配置的性能。将处理器IP(Intellectual Property,知识产权)内核嵌入到可编程逻辑器件是SOPC设计的前提条件。

在Altera的FPGA器件上嵌入处理器等IP核可实现SOPC,设计时可使用的RISC处理器核有3种:ARM的工业标准处理器硬核ARM922T、Altera的16位Nios和32位Nios II处理器软核,而片上总线可采用AMBA和Avalon两种总线。在嵌入了ARM922T的Excalibur系列FPGA上,使用了AMBA总线的高性能总线AHB(Advanced High-performance Bus);而在可嵌入Nios的FPGA上则使用Avalon总线。这两种总线也是目前SoC设计使用较多的片上总线标准。

1 片上总线与传统总线体系的比较

片上总线是实现SoC中IP核连接最常见的技术手段,它以总线方式实现IP核之间的数据通信。片上总线规范一般需要定义各个模块之间初始化、仲裁、请求传输、响应、发送接收等过程中的驱动、时序、策略等关系。

传统总线协议中,仲裁器控制一至多个总线主设备与从设备的通信。总线主设备首先通过仲裁器来申请总线控制权,然后仲裁器才允许单一主设备访问总线。如果多个主设备试图同时访问总线,仲裁器将根据既定的仲裁策略,将总线资源分配给其中一个主设备。例如,在优先级仲裁机制中,优先级高的主设备将首先得到总线控制权。

控制总线的主设备会占用总线,并与相应从设备通信。图1说明了优先级仲裁总线体系的结构,该体系在传统微处理器系统中工作良好。由于主、从设备是位于印制板或底板上的独立部件,总线需要驱动底板上的信号和连接器。而且,鉴于有限的印制板资源和可用I/O引脚数目,所有系统部件还必须共用总线。

片上总线无需驱动底板上的信号和连接器,使用更简单且速度更快;同时,为了满足带宽要求,片上总线普遍采用并发多主设备总线体系。这种总线体系通过消除传统总线系统中一次仅有一个主设备可以访问系统总线的带宽瓶颈,来增加系统带宽。在此体系中,总线主设备竞争的是独立的从设备,而非总线本身。
 
2 AMBA总线及其应用
 
2.1 AMBA总线

AMBA(Advanced Microcontroller Bus Architecture)总线用于高性能嵌入式系统,独立于处理器和制造工艺技术,增强了各种应用中外设和系统宏单元的可重用性。AMBA是多总线体系,目前的AMBA总线规范2.0版定义了3种可以组合使用的总线体系:APB(Advanced Peripheral Bus),ASB(Advanced System Bus),AHB。AHB是现阶段AMBA的主要形式。
[!--empirenews.page--]
典型的AMBA总线结构如图2所示。其中的高性能系统总线(AHB或ASB)主要用以满足CPU和存储器之间的带宽要求。CPU、片内存储器和DMA等高速设备连接在系统总线上,而系统的大部分低速外设则连接在低带宽总线APB上。系统总线和外设总线之间用一个桥接器(AHB/ASB-APB-Bridge)连接。
 

AHB适用于高性能、高时钟频率的系统。作为高性能系统的骨干总线,AHB主要用于高性能、大吞吐量设备之间的连接,如CPU、片上存储器、DMA设备和DSP或其它协处理器等,有支持并发多主设备、支持多种数据传输方式等主要特性。

在不必使用AHB的高速特性时,可选择ASB作为系统总线。ASB也支持CPU、片上存储器和片外处理器接口与低功耗外部宏单元之间的连接。ASB的主要特性与AHB类似,主要不同点是采用同一条双向数据总线来读、写数据。

APB非常简单,适用于低速、低功耗的外设,只有一个总线主设备控制器,最大支持32位数据总线宽度,读、写数据总线分开。

2.2 AMBA在Excalibur器件中的应用

嵌入了ARM922T的Excalibur器件使用AHB1和AHB2两种总线提供有效处理数据给不同片上外设:AHB2上的低速外设和AHB1上的高速外设。其优点是可以分开高、低速外设,最大发挥较快外设的性能,从而提高整个系统的性能。图3给出了基于ARM922T的Excalibur器件总线体系。

该总线体系通过总线桥允许ARM922T访问片上外设和PLD。PLD中的外设通过PLD到模块的桥访问AHB2外设。在AHB1和AHB2总线上都有片上存储器单元(SRAM、双口SRAM和SDRAM)。为避免数据出错,总线内部仲裁在每个存储器单元中完成。

3 Avalon总线及其应用

3.1 Avalon总线

Avalon总线是SOPC设计中连接片上处理器和其它IP模块的一种简单总线协议,规定了主、从构件之间的端口连接以及通信时序关系。使用Avalon总线,能优化处理器和外设间的数据流,提高系统的吞吐量,并且允许根据应用特性裁剪总线体系,从而获得最佳的系统性能。Avalon总线有支持并发多主设备、自动生成仲裁机制、可配置等主要特性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭