当前位置:首页 > 电源 > 数字电源
[导读] 如果你需要测量电源功率,甚至计算出功率因数,那么Pico示波器内置的高级数学函数功能完全可以作为一台功率分析仪来使用。即Pico示波器除了可以作为示波器、信号发生器,频

 如果你需要测量电源功率,甚至计算出功率因数,那么Pico示波器内置的高级数学函数功能完全可以作为一台功率分析仪来使用。即Pico示波器除了可以作为示波器、信号发生器,频谱分析仪使用外,还可以作为一台功率分析仪。下面介绍其具体使用。

1、系统配置

本实验主要用来测试电源供电的台扇的功率因数。之所以台扇为例,是因为其内置一个小的交流电动机,能够产生一个典型的电流波形和低的功率因子。

测试仪器如下:

≈ 台扇,额定功率25W,220V~240V

≈ PicoScope 3206 PC示波器(2通道

≈ 笔记本电脑,安装PicoScope 6 软件

≈ Pico TA009 60A 电流钳

≈ Pico TA041 700V差分探头

≈ 改良的延长线,主要将火线和地线分开,用热收缩套管保护,以起到双绝缘的效果

≈ 电源接线盒,便于差分探头输入端4mm插头安全的插接在电源上。

2、通道设置

将风扇插入改良过的延长线中,然后再插入电源。打开电流钳,按“ZERO”按钮归零,然后将电流钳夹在延长线的火线上,电流钳BNC端连接到示波器的A通道。打开笔记本电脑上的PicoScope 6软件,设置A通道触发,选择A通道定制探头中的”60A current clamp(20A mode)”选项。之后,打开风扇,我们看到一个PicoScope界面显示一个有噪声的失真的正弦波形(Figure 1)。

打开差分探头,设置x100档位,连接到B通道,选择x100 定制探头,然后我们看到一个干净的240V正弦波(Figure 2)。

3、测量和计算

在采集到风扇的电压和电流波形之后,我们就可以用Pico示波器的数学通道功能。首先创建一个新通道,看起来类似于输入通道,但是却是对一个或多个通道进行数学运算得到的。该实验中,我们需要计算瞬时功率。通过菜单”工具>数学通道“打开一个数学通道对话框,然后勾选罗列在对话框中的“A*B函数“(对话框中罗列了常用的函数,如果没有您需要的函数,可以自己用公式创建一个)。这样就创建了第三个通道,用于显示瞬时功率随时间的变化。默认情况下,该功率通道垂直轴的单位是”?“,因此我们需要将其改为”W“,国际单位制中的瓦特。我们也可以将该通道曲线的颜色改为绿色,这样对比更加明显。绿色曲线显示每个工频周期内瞬时功率随着电扇发动机的旋转和电流相位的变化情况(如Figure3所示)。

接下来是添加一个自动测量值。在PicoScope 6中有一个快捷按钮,点击打开增加测量值对话框,选择通道源和测量值类型。这里增加3个测量值:数学通道中的DC平均值,输入电流和电压的RMS值(如Figure4所示)。

测量表格中显示该设备运行的平均功率是19W,这也正好跟风扇低功率模式下的值相符。不过还有一点小小的错误,这里测试的是50ms内的平均电源功率,却不是20ms的整数倍周期的平均功率。我们其实可以通过两个标尺来将测量值的计算时长限制在20ms或者40ms内,从而达到精确测量的。

计算功率因子

测量表格中的第二行和第三行分别是电流和电压的RMS值。现在我们有足够的数据来评估功率因子(pf),计算公式如下:

pf= PR/PA

其中PR是实际功率,PA是视在功率,两者都是一个电源周期下的平均值。

PR=19.32W

视在功率PA也是很容易计算的。它是由产品电流和电压的RMS值来计算的。

PA=0.1307A×246.9V≈32.27 W

所以功率因子

Pf≈19.32W/32.27W≈0.60

功率因子总是在0~1的范围内,0表示纯电容或电感负载,1表示纯电阻负载,因此0.60是一个小的AC电动机的期望值。

4、结论

这里我们已经看到如何用PicoScope来查看电源功率波形。用Pico6软件中内置的测量和计算功能,很容易计算出设备的实际功率,视在功率和功率因子。功率因子参数在产品的资格预审测试中是非常有用的,同时也可以省下额外购买测试低功率因子电子设备的费用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭