当前位置:首页 > 电源 > 数字电源
[导读]我的同事Chris Keeser正在研究SoC">PSoC5LP开关电容模块,发现了该产品的一个隐藏特性。SoC">PSoC的入门设计工具PSoCCreator中并没有提到这个特性,参考手册提到了,但只是

我的同事Chris Keeser正在研究SoC">PSoC5LP开关电容模块,发现了该产品的一个隐藏特性。SoC">PSoC的入门设计工具PSoCCreator中并没有提到这个特性,参考手册提到了,但只是非常简略地一笔带过。您会问,这到底是什么特性?这就是开关电容模块中内置的一阶Sigma-Delta调制器模式。

那么,为什么这会对电源设计有用呢?下面我就来一步步分析。看看您的家庭或办公室,您会发现各种电子系统,大多数电子系统乃至全部电子系统都要通过电源将较高的AC电压转变为较低的DC电压。为了安全,这种转换过程需要高度隔离。这里需要考虑一个进退两难的问题,大多数开关电源都必须在没有DC电流的空隙上调节输出。怎么调节输出呢?解决这个问题的常见经典方法就是结合误差放大器和补偿网络以及偏置光耦合器,如图1所示,实现安全空隙的桥接。这是一个比较简单的例子,并不能描述所有可能的隔离设计情况,不过这也能说明问题。  

可以使用经过适当设计的光耦合器,而且往往比较成功,但(或许您已经知道了)光耦合器是多变不定的。两个具有相同部件号的相邻光耦合器在传输特性方面可能大不相同(部件的正常制造差异)。传输特性会随着部件的老化而发生明显变化。再加上采用如图1所示的偏置配置,其传输特性通常是非线性的,这就会引发整个系统的稳定性问题。由于这些因素的存在,要设计出适合大规模生产且经久耐用的电源,就会面对相当大的挑战。

数字隔离器相对于普通光耦合器而言具备一项优势,即输入到输出的关系基本是一比一,而且不会变化。此外,信息传输的速度也非常快。数字隔离器的技术障碍在于它的二进制特性,这与图1的例子形成对比。数字隔离器善于传输数据,而不是原始的模拟信号。这就是Sigma-Delta调制器能够发挥作用的地方了。

基本说来,Sigma-Delta调制器能将特定范围的模拟信号转变为高速比特流,这个密度流代表着模拟信号。要记住,这不是数据包,而是原始比特流。图2给出了一个例子。请注意,这张图是从右到左画的,可以简化分析,这与本文所有其他示意图中控制信号流相对应。模拟信号被驱动进入调制器。Sigma-Delta调制器将信号转变为由1和0组成的高速流,平均加权与输入信号成正比。原始信号可在另一端通过数字处理(IIR、抽取或其他滤波方式)或简单的模拟滤波进行重构。  

这样,图1中的模拟理念转变成了图3所示的数字理念。光耦合器被数字隔离器所取代。这样,偏置或部件差异问题基本就不存在了,至少对我所用的这个数字隔离器来说是这样。偏置电路也被消除。Sigma-Delta调制器与模拟补偿和可编程参照生成功能相结合,形成一种适用于电源应用的小型混合数字与模拟控制策略。这样做的好处在于可将功能集成在单一可编程SoC上。集成优势还不仅限于此,可编程SoC还包括数字处理以及可编程数字功能。  

当然,结合使用Sigma-Delta调制器和数字隔离器来传输模拟信息的这种方式不太可能适合所有设计,特别是对于性能要求相对较低的极端成本敏感型应用而言更是如此。不过,数字技术的不断普及和集成的持续推进使得这种理念在某些系统中极具吸引力,例如服务器电源和微型逆变器等高密度复杂系统。在这些系统中,跨越隔离边界传输数字与模拟组合信息需要不止一个通道。因此,可将各个独立光耦合器用单个多通道数字隔离器完全取代,用以传输数字与模拟混合信息。图4中,使用一个四通道隔离器传输Sigma-Delta转换的两个高速模拟信号以及一对全双工UART通讯信号。  

我工作所涉及的所有电源平台都在向更低成本、更高密度和效率方向发展。说到底,这将推进更强大的集成策略发展,也就是说能通过改变来不断改进,同时还要减少组件。可编程SoC能有效满足这一需求。从工程师的角度来看,我个人认为Sigma-Delta调制器是一个很酷的功能,有助于集成趋势发展,特别有利于满足电源应用的需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭