当前位置:首页 > 嵌入式 > 嵌入式电路图
[导读]以往的直流电机调速系统通常采用单片机或DSP进行控制,而单片机需要使用大量的外围电路,且系统的可升级性差,如更换控制器,往往要对整个软硬件进行重新设计,可重用性不高

以往的直流电机调速系统通常采用单片机或DSP进行控制,而单片机需要使用大量的外围电路,且系统的可升级性差,如更换控制器,往往要对整个软硬件进行重新设计,可重用性不高。而采用DSP作为主要控制器,如果碰到处理多任务系统时,一片DSP不能胜任,这时就需要再扩展一片DSP或者FPGA芯片来辅助控制,从而实行双芯片控制模式。但这样做,既增加了两个处理器之间同步和通信的负担,又使系统实时性变坏,延长系统开发时间。基于以上此类问题,本文提出了采用Altera公司推出的NiosⅡ软核来控制直流电机调速系统,它的好处在于Ni-osⅡ属于软核处理器,可以直接通过软件形式扩展成双核乃至多核,无需外加芯片;再者NiosⅡ软核处理器和所有外围电路可以集成到一片FPGA芯片上来实现整个直流电机控制系统,这样无疑大大减小了控制器体积和重量,设计人员也可以在短时间内完成整个系统的制作,提高了工作效率。

本文利用Altera公司的FPGA芯片EP2C35F672C6作为系统控制器,采用数字PID算法对直流电机进行PWM闭环调速控制。并且利用硬件描述语言(VHDL)自行设计、生成PWM模块和测速模块,最后通过实验验证了该系统的可行性。

1 系统硬件设计

1.1 系统总体设计方案

选用Altera公司的DE2开发板作为开发平台,采用SOPC技术通过在FPGA中植入嵌入式系统处理器NiosⅡ作为核心控制电路,利用FPGA中的可编程逻辑资源和IP软核来构成该嵌入式系统处理器的接口功能模块,借助于Avalon总线,实现对外围PWM模块、测速模块、SDRAM、键盘等硬件的控制,FPGA通过Avalon总线对输入模块和输出等模块进行配置,整体功能框图如图1所示。

 


整个系统的主要工作流程如下:当系统启动完成各单元初始化后,通过键盘输入期望设定值,同时由光电编码器采集实测转速传输到测速模块,通过NiosⅡ处理器处理电机PID控制算法,并将计算后的数据传输给自定制的PWM模块对其进行闭环控制。最后在NiosⅡIDE上采集到实际输出数据,并通过Matlab软件画出控制曲线波形图,最后对实验结果进行分析。

1.2 PWM模块

系统中的自定制PWM模块是通过写VHDL代码,经过仿真、编译、管脚分配,最后生成PWM功能模块。它在整个系统中的作用是:对实测转速通过计算进行闭环控制。生成的PWM模块如图2所示。

 

图2中:clk为时钟信号端;sta用来控制直流电机正反转;conword为占空比信号;PWM_A表示直流电机处于正转状态时的占空比输出;PWM_B表示直流电机处于反转时的占空比输出。

PWM模块的原理如下:将时钟源50 MHz的基频信号64分频,作为PWM模块的基频信号,以256个该基频脉冲信号作为PWM输出的一个周期,由NiosⅡ处理器给出的conword的值指定一个PWM周期内高电平持续时间,改变conword的值即刻改变占空比输出的值。

1.3 测速模块

系统中的测速模块生成方式如PWM模块,它在整个系统中的作用如下:主要是利用基频的周期来计算光栅信号的周期,算出直流电机的转速,其生成的模块如图3所示。

 

图3中:clk为时钟信号端;en为使能信号,即表示光栅有效;dout表示光橱有效时间。

测速模块的原理如下:给出已知频率的基频,用光栅作为门限,测基频脉冲的个数,由基频的周期来计算光栅信号的周期,再算出转速,电机控制算法即根据测速模块测出的速度进行算法调整,达到闭环控制的效果。

2 系统软件设计

本次设计的软件主要分为两部分:

(1)利用QuartusⅡ7.2完成NiosⅡ系统的构建:利用SOPC Builder构建NiosⅡCPU;使用VHDL编写各控制模块。

(2)利用NiosⅡIDE完成系统控制与控制算法编写,主要使用C语言进行控制与算法编写;对直流电机进行成功控制后,在NiosⅡIDE上采集输出转速的实测数据,将其导入Matlab画出控制效果图,整体软件框图如图4所示。

 

本次设计使用SOPC Builder组建的NiosⅡ嵌入式系统,如图5所示。该系统除了配置NiosⅡ最小系统的CPU核NiosII CPU,Avalon总线,使用FPGA资源例化的存储器之外,还有以下外接设备的控制单元:

 

(1)SDRAM Controller;

(2)Common Flash Interface;

(3)JTAG UART;

(4)锁相环PLL;

(5)Interval Timer;

(6)通用I/O接口,包括PWM模块接口conw,msta和测速模块接口speed,按钮接口button。

对于SOPC Builder组建的NiosⅡ系统,可以在QuartusⅡ软件方便地调用,在QuartusⅡ中Block Diagram设计调用NiosⅡ系统的框图如图6所示。给该系统配备工作时钟,并分配FPGA的I/O管脚,程序经综合,布局,仿真之后,就可将配置文件通过各种配置方法下载到FPGA上。本文使用JTAG+AS方式配置,通过USB Blaster下载电缆线将计算机USB接口与FPGA的JTAG口相连,把配置文件从计算机下载到FPGA中,这样就完成了系统的软件设计。

 

3 实验与数据分析

3.1 测试系统

测试系统由一个额定电压为2.5 V的直流有刷电机和Altera公司的DE2开发板组成。电机相关技术指标为:额定电压为2.5 V,额定功率为O.065 W,额定转速为2 150 r/min,空载转速为2 650 r/min。[!--empirenews.page--]

整个测试系统的硬件结构图如图1中所示,其工作流程在前文中有详细介绍。

3.2 实验结果及分析

将直流电机增量式PID算法以C语言的形式写入NiosⅡIDE中,调试后将其采集到的实测数据导入Matlab,画出时间与转速之间的关系图形如图7~图9所示。

(1)比例(P)控制

取采样周期T=0.1 s,KP=0.5,实验结果如图7所示。

 


在P控制中,比例环节的作用是对偏差作出快速响应,Kp,越大,控制能力越强,但跟过大的Kp会增大超调量,另外比例环节可以减少稳态误差,但不能完全消除。从图7中可以看出比例环节使得电机的转速从零提升到设定值的过程比较快,但出现了比较明显的超调,且存在一定的稳态误差。

(2)比例积分(PI)控制取采样周期T=O.1 s,Kp=0.5,T1=2,实验结果如图8所示。

 


在PI控制中,积分环节的作用的是消除累计下来的偏差(即稳态误差),在控制过程中,只要有偏差存在,积分环节的输出就不断增大,直到偏差为零,输出才可能稳定在某一值上。但积分环节会降低响应速度,增加超调量,T1越大,积分作用越弱。从图8中可以看出,在比例环节上加上积分环节,先前的稳态误差得到消除,电机转速趋于设定值,但同时也增加了另一段超调量。

(3)比例积分微分(PID)控制取采样周期T=0.1 s,Kp=0.5,T1=2,TD=0.1,实验结果如图9所示。

 

在PID控制中,微分作用是根据偏差的变化趋势进行控制的,偏差变化得越快,微分环节输出就越大,并且能在偏差值变大前进行修正。微分环节有利于减小超调量,克服振荡,TD越大,微分作用越大。从图9中可以看出,加入微分环节后,超调量明显得到有效抑制。

从图7~图9中可以看出,用PID控制算法控制基于NiosⅡ的直流电机控制效果还是不错的,有一定的稳定性,即便在转速出现跳变时,也能进行良好的跟踪。PID控制算法已经相当成熟,参数可以通过整定很容易得到,实验表明,此方案具有一定的可行性。

4 结语

提出一种直流电机的新型控制方式,即利用NiosⅡ软核和FPGA芯片对其控制。通过实验验证,将PID增量式算法应用到此系统中,能进行良好的闭环控制。在电机控制中如遇更复杂的电机,如无刷电机等,用NiosⅡ软核进行控制,可以将其扩展为双核乃至多核,一个CPU用来控制算法,另一个CPU用来控制外围系统,互不干扰,发挥NiosⅡ处理器的最大优势。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭