当前位置:首页 > 嵌入式 > 嵌入式硬件

无线射频识别(RFID)技术目前己被广泛应用,但其缺乏安全机制,无法有效地保护RFID标签中的数据信息。该文分析了RF1D技术在应用中存在的安全及隐私问题,提出了在RFID标签芯片计算资源有限的情况下解决这些问题的一个安全通信协议。该协议利用Hash函数技术实现了防止消息泄漏、伪装、定位跟踪等安全攻击。

  由于文章技术符号较多,文末提供PDF下载链接,部分原文如下:

  1 无线射频识别技术简介

  无线射频识别技术(radio frequency identification,RFID)或称电子标签技术是从二十世纪六七十年代兴起的一项非接触式自动识别技术。它利用射频方式进行非接触双向通信,以达到自动识别目标对象并获取相关数据的目的,具有精度高、适应环境能力强、抗干扰性强、操作快捷等许多优点。最基本的RFID 系统主要由下面3部分组成:

  (1)标签(tag):又称电子标签、智能卡、识别卡或标识卡,由嵌入式微处理器及其软件、卡内发射与接收天线、收发电路组成。标签为信息载体,含有内置天线,用于和射频天线问进行通信。

  (2)阅读器(reader):读取/写入标签信息的设备。

  (3)后台数据库(backend):用于存储标签标识所对应的相关数据。

  一般情况下,阅读器和后台数据库之间的通信可以认为是安全可靠的,本文将二者等同看待。

  2 RFID面临的安全问题

  无线射频识别技术的应用虽然十分广泛,但其存在一个不可忽视的隐患——安全机制。没有可靠的安全机制,就无法有效保护RFID标签中的数据信息。目前,RFID的安全性已经成为制约RFID广泛应用的重要因素。针对RFID的主要安全攻击可简单地分为主动攻击和被动攻击2种类型。

主动攻击主要包括:

(1)从获得的RFID标签实体,通过逆向工程手段,进行目标RFID 标签重构的复杂攻击;

(2)通过软件,利用微处理器的通用通信接13,通过扫描RFID标签和响应阅读器的探询,寻求安全协议、加密算法以及它们实现的弱点,进而删除RFID标签内容或篡改可重写RFID标签内容的攻击;

(3)通过干扰广播、阻塞信道或其他手段,产生异常的应用环境,使合法处理器产生故障,拒绝服务的攻击等。

被动攻击主要包括:通过采用窃听或非法扫描等技术,获得RFID标签和识读器之间或其他RFID通信设备之间的通信数据,跟踪货品流通动态等。

  攻击者通过对RFID系统中的标签、标签中存储的数据以及标签与阅读器之间的通信实施主动攻击或被动攻击,将使RFID系统面临非常巨大的安全风险。

  RFID系统中最主要的安全风险是“数据保密性”。显然,没有安全机制的RFID标签会向邻近的识读器泄漏标签内容和一些敏感信息。由于缺乏支持点对点加密和PKI密钥交换的功能,在RFID系统应用过程中,攻击者有许多机会可以获取RFID标签上的数据。RFID系统中的另一个安全风险是“位置保密性”。如同个人携带物品的商标可能泄漏个人身份一样,个人携带物品的RFID标签也可能会泄漏个人身份,通过识读器就能跟踪携带系列不安全RFID标签的个人。此外,攻击者还可以利用伪造标签代替实际物品来欺骗货主,使其误认为物品还在货架上。攻击者也可能通过篡改RFID标签上的数据,用低价物品标签替换高价物品标签,以此来获取非法利益。

  3 基于Hash函数的安全通信协议
  …………
  (5)对通信内容的保护。因为协议首先对tag和backend进行了相互认证,通过认证的双方在协议的第(4)步进行了会话密钥的传递,而且此密钥将用于本次会话时的数据传输加密,所以攻击者即使能够窃听到tag和reader之间的通信数据,也无法获取其真实内容。

  5 结束语

  目前已有不少关于RFID系统的安全问题的协议和方案公开发表,但是其中的绝大多数只是针对安全问题的某些方面,并没有一个成熟的完整解决方案。而另一方面,受到被动式标签芯片性能和运算能力的限制,一些比较成熟和先进的加密算法如AES、RSA、椭圆曲线密码等近期内还无法运用到RFID标签的加密中。

  本文提出的RFID 安全通信协议基于传统的challenge—response框架,其采用的Hash函数对标签芯片的计算能力要求较低,比较适用于目前的实际情况和成本控制目标。同时,该协议的框架具有向后兼容公钥密码体制的特性,当今后标签芯片性能可以支持某些公钥密码算法时,可以方便地将Hash函数部分改为公钥密码算法,而对于协议的执行步骤,只须做少许改动即可。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭